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Introduction

* By the term frequency response, we mean the steady-state
response of a system to a sinusoidal input.

* Infrequency-response methods, we vary the frequency of the
input signal over a certain range and study the resulting
response.

* Assume the following system, if the input is sinusoidal

X(t) = Asin(wt X(s) Y(s)
The steady state output is

Voo () = AG(jo)|sin(ot + £G(jw))

where G(jw) is called the sinusoidal transfer function.
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Introduction

* Example 1: Find the steady-state output of the following

system in response to X(t) = Asin(wt)
X(s)

Y (s)

K
Ts+1 _ K
Bt V14T 20

G(s) =

B G(jo)= AN

JTo+1

_ £G(jo)=-tan" Tw

Vo (1) = AG(jo)|sin(wt + LG (jw))

| V. ()= sin(a)t —tan‘lTa))

i V14T %0
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Presenting Frequency-Response
Characteristics in Graphical Forms

* The sinusoidal transfer function, a complex function of the
frequency o, is characterized by its magnitude and phase
angle, with frequency as the parameter.

* There are three commonly used representations of sinusoidal
transfer functions:

G(jw)| vs. @

1. Bode diagram or logarithmic plot /G(jo) vs. o

2. Nyquist plot or polar plot

Im[G(jw)] vs. Re[G(jw)]

3. Log-magnitude-versus-phase plot (Nichols plots)

G(jo)| vs. £G(jw)
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Bode Diagrams

A Bode diagram consists of two graphs:

1. Oneis a plot of the logarithm of the magnitude of a
sinusoidal transfer function;

2. The other is a plot of the phase angle; Both are plotted
against the frequency on a logarithmic scale.

The standard representation of the logarithmic magnitude of
G(Jw) is 20 log | G(Jw) |, where the base of the logarithm is 10.
The unit used in this representation of the magnitude is the
decibel (dB).
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Basic Factors

The basic factors that very frequently occur in an arbitrary
transfer function G(jo)H(jw) are

1. GainK

2. Integral and derivative factors (j®)™

3. First-order factors (1+ jo)*

4. Quadratic factors [1+2§(ja)/wn)+(jw/wn)2]ﬂ

Note that adding the logarithms of the gains corresponds to
multiplying them together. 3

2017 Shiraz University of Technology Dr. A. Rahideh



Basic Factors
1. GainK 4

G(j) =|K|| [l6ti)l, = 20109k

G(s)=K m) G(jo)=K - _ 5 =
£G(Jw) =
-180° K <0
N
|G£jco)| |G£ jo), L(AS(ja))
K| 20log|K| K>t
K>0
> ol © >
ZOlog|K| K<l 180 K<0
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Basic Factors

2. Integral (jo)™ a |
& G(jow) == | [[G(jw)|, =—20logw
1
G(S)— —> G(ja))—J— {
N
|G£jw)| Both axes are |G£ja))|d8 4(‘3(]0))
logarithmic
10 20
1 \ | > \ | X ) | | >
0.1 1\0 (0] 0.1 1\0 a) 0.1 1 10 ps
Uil |p====m=essssascmas —20 I 90
10
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3. Derivative (jo) r

G(s)=s mp G(jo)=jo -

Basic Factors

G(jo)|=w

/G(jw) =+90°

N
G(jo)| G(jo),, ZG(jw)
A A A

I 20 b 90

1 |/ > / 0 | |

0.1 10 @ 0.1 1 10 0.1 1 10 @
0.1 Both axes are —20
logarithmic
11
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Basic Factors

. o 14 iwT)™ 4
4. First-order (1+ joT) G(jo)| = L (1)

1 1 \/1+T20)2

SO LT W S0,

ZG(jo)=-tan(Tw) | (2)

N

: — i —20logT =
(1)»‘G(Jw)‘:<T(0 @273 »‘G(ja))‘dB:{O D e

1
0)<<T

G(jo)| . :% 6(jo),, ,.: ~-20log2 =3 dB
T

12
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Basic Factors

o . 1 ( 1
4. First-order (1+joT) B B
G 1 ‘ (Ja))‘ =1 Tw .
S)= <<=
) 1+Ts !
/6(jo) = —tan*(To) | |G(jo) -20l0gTw w>>+
J 19)ee 0 w<<i
|G£ja))| |G£ jo) . £G(jo)
0.1 1 1+ 10 2 0.1 1
?12-'-'-'-"‘-- ' _—%-'-'-'-'-"-~
(1 R Y] R SR
13
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Basic Factors

5. First-order 1+ joT) -

G(jo) = V14T 20 (1)

G(s)=1+Ts » G(jo)=1+jTo <

/G(jo)=tan'(Tw) | (2)

N
i To o>+ . 20logTw w>>3%
(1) »\G(Jw)\={l AL \G(Jw)\d8={o o
T T
\G(jw)\w:% =2 G(jw)|,, 1 =20logy2=3 dB

14
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Basic Factors

5. First-order 1+ joT)

G(s)=1+Ts

To o>>+

\em\:{

1 0 <<7

20l0gTw w>>+

ZG(jo) =tan*(Tw) ‘G(ja))‘dB :{

0 w<<%
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Basic Factors

6. First-order (-1+ joT) -

G(jo) = V14T 20 (1)

G(s)=-1+Ts » G(jo)=-1+ jTo <

£G(jo)=tan*(2) | (2)

N
i To o>+ . 20logTw w>>3%
(1)»\6(10))\:{1 AL \G(Jw)\d8={o o
T T
\G(jw)\w:% =2 G(jw)|,, 1 =20logy2=3 dB
16
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Basic Factors

6. First-order (-1+ joT) _ To w>>i
‘G(Ja))‘: 1 1
G(s)=-1+Ts O <<T
20logTw w>>2
/G(jo)=tan*(12) | | |G(]j = !
(o =tan” 9| [eGi, =T 2
lf(jw)
180
135 .
90
0.1 110 o
17
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Basic Factors

7. Second-order

0’ 1
G(s) = L G(s) =
) s+ 20w, S+ ! » ) 52+2§s+1
C()r? C()n
e . 1
G(jo)|=

n 20 @
. zeua)):—tan{fj;}

W

18
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Basic Factors

7. Second-order | [6(jo) =

2 -] s
G(s) = - m) - o o

s +2lw, S+ !

ol JET e

1 W << o,

{—4Ologwﬂn 0 >> 0,

G(i _
‘ (Ja))‘dB 0 W << @,

19
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20
Basic Factors
10
7. Second-order
dB 0
2
a)n
G(s) = 2 2
S°+ 24w, S+ o, 10
20 o "
/G(jow)=—-tan™ o o
1_2_3 & —90°
. —40log2  w>>wm, | o
G(j@), ={ “
0.1 n.lz n.|4 r;}_la 0.8 1 2 4 6 810
20 o
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Basic Factors

7. Second-order
The Resonant Frequency @, and the Resonant Peak Value M,

The peak value of |G(j®)| occurs when the denominator, g(®) ,
minimizes

g(w)—J(l—”—i) +[24“ ﬁj

@, a,

%:O » 60r:a)n\/1_2§2 OS§<%
Q

1

20 1= ¢

M, =|G(j@)|,,, =[C(i®m,)|= 0<¢<

i
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Basic Factors

Corner frequency

* In the first-order system of the following form,
K

Ts+1

G(s) =

the corner frequencyis @, =7

* In the second-order system of the following form

K

G(s) =
) $° + 20w S+ o'

the corner frequency is W, =,
22
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Basic Factors

Corner frequency

 Example 1:

G(s) = 4 m) C0O)= ‘

35+2

the corner frequencyis @, =1= %

 Example 2:
6 3
)

G(s) =
(5) 25° +2s5+4 S°+5+2

the corner frequencyis @, =w, = J2
23
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Bode Diagrams

Example: Plot the bode diagrams of the following system

1000 _ 1000
s(s+9)(s+50) = G(jo) jo(jo+5)(jo+50)

m) G(jo)= u

Jo(J2+)(15+1)
The corner frequencies are 0y =7=5 and @,=7 =50
G(jo)|,, = 20log4 + 20logli| + 20log-t; + 20logl*
LG(ja)):O+4_i+L_l +L_1

jo g +1 Jgo+l

24
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Bode Diagrams (Magnitude)

Example: Plot the bode diagrams of the following system

The corner frequencies are Wy = % =9 and @ = % =50
1 — 1 1 1
G(jw)|,,= 20log4 + 20 Iog‘j—w‘ + 20log 25 + 20log2;
G(jo)
4 — 20 dB/decade
___________ 20log 4
1000 > o

~
~ 20log|—+

jol50+1

4 -, Vs
G(jow)=—— : \  20log|-—%
Jo(] 5+ D(J 50T 1) _ 60 dB/decade "** 20log|;
25 ‘G(jw)‘ds
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Bode Diagrams (Phase)

Example: Plot the bode diagrams of the following system

The corner frequencies are a)clz?ll:5 and 0)(:2:%:50
ZG(]&))—O—I—Zi-i—Zl +4_1
jo J§+1 Jgo+l
49(160)
ol L 5 R o .
¢ N
4 Mo
G(jo) = B S S AT

Jo(J2+)(]&+1)

-90

—270

26
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Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following
SyStem 1000 4

_ G(l1w) =
6O =ssrme150 = CU oG a

w=logspace(-1,3,100);
numT=1000;

denT=[1 55 250 0];
numl1=4;

denl=1;

num2=1;

den2=[1 0];

num3=1;

den3=[1/5 1];

27
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Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following
SyStem 1000 4

6O =ssrme150 = CU oG a

num4=1;
den4=[1/50 1];

'mag,phase]=bode(numT,denT,w);

'magl,phasel]=bode(num1l,denl,w);
'mag2,phase2]=bode(num?2,den2,w);
'mag3,phase3]=bode(num3,den3,w);
'mag4,phased]=bode(num4,dend,w);

28
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Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following

SyStem 1000 ] 4
G(s) = m) G(jo)=—— —
s(s+5)(s +50) Jo()2+1) ()5 +1)
figure(1)
loglog(w,mag,'b’,'linewidth’,3)
hold on

loglog(w,magl,'r--','linewidth’,2)

loglog(w,mag2,'k:’,'linewidth',2)

loglog(w,mag3,'g-.",'linewidth’,2)

loglog(w,mag4,'m--','linewidth’,2)
legend('G(j\omega)','K=4",'1/j\omega’,'1/(j\omega/5+1)','1/(j\omega
/50+1)")

29
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Bode Diagrams Using MATLAB
Example: Using MATLAB Plot the bode diagrams of the following

SyStem 1000 ] 4
G(s) = m) G(jo)=—— —
s(s+5)(s +50) Jo()2+1) ()5 +1)
figure(2)
semilogx(w,phase,'b’,'linewidth’,3)
hold on

semilogx(w,phasel,'r--','linewidth’,2)
semilogx(w,phase2,'k:','linewidth’,2)
semilogx(w,phase3,'g-.",'linewidth’,2)
semilogx(w,phase4,'m--','linewidth’,2)
legend('G(j\omega)','K=4",'1/j\omega’,'1/(j\omega/5+1)','1/(j\omega
/50+1)")

30
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Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following

G(s) = m) G(jo)=—— —
s(s+5)(s +50) Jo()2+1) ()5 +1)
10°
0 L Note that the
B ey magnitude is
S wl TN in logarithmic
S el N scale.
o e N\
CEU w0l |mmeks | N\

Magnitude in

10 1/(jw/5+1)
= = = 1/(jo/50+1) .
NOT in dB
10" 10° 10 10 10°

31 0
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Bode Diagrams Using MATLAB
Example: Using MATLAB Plot the bode diagrams of the following

system 6(s) 1000 G(jw) = 4
s(s+5)(s +50) I Jo(]2+D) ()5 +1)
0----------==:: --------------
50 - ~~\\\
n
c
-150 G (jo
o Tk
------- 1ljo
200 r 1U(jol5+1)
- = = 1/(jo/50+1)
250 |
32 0
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Minimum-Phase Systems and
Nonminimum-Phase Systems

* Transfer functions having neither poles nor zeros in the right-
half s plane are minimum-phase transfer functions,

* Whereas those having poles and/or zeros in the right-half s
plane are nonminimum-phase transfer functions.

e Systems with minimum-phase transfer functions are called
minimum-phase systems,

 whereas those with nonminimum-phase transfer functions
are called nonminimum-phase systems.

33
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Transport Lag

* Transport lag, which is also called dead time, is of non-
minimumphase behavior and has an excessive phase lag with
no attenuation at high frequencies.

e Such transport lags normally exist in thermal, hydraulic, and
pneumatic systems.

* Consider the transport lag givenby  G(jw) =e "

 The magnitude is always equal to unity, since

G(jw)|=|cosaT - jsineT|=1 mp |G(jw),=0

34
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Transport Lag

* Consider the transport lag given by G(jw)=e 1"
 The magnitude is always equal to unity, since
G(jw) =|cosaT - jsineT|=1 == G(jw)|, =0
* The phase angle is
£G(Jw)=-oT (radians) /G(jw)=-57.30wT (degrees)

G(i)yg “G(jo)
A

0 >

SE/

35
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Bode Diagrams

* Consider the following system

G(s) = (T.s+D)(T,s+1)---(T_s+1)
= s"(T,s+D)(T,s+1)--- (T _ s+1)

* Where the system is of type N, the order of the numerator is
M and the order of the denominator is n.

* The relation between the start- and end-slopes of the
magnitude Bode diagrams with the system-Type and order
are as follows

Start slope =—-20N dB/decade
;s  End slope=-20(n—m) dB/decade
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Bode Diagrams

 Consider the following minimum-phase system
G(s) = (T,s+1)(T,s+1)---(T, s+1)
s"(T,s+D)(T,s+1)--- (T _ s+1)

 Where the system is of type [, the order of the numerator is m
and the order of the denominator is n.

* The relations between the start- and end-phase of the phase
Bode diagrams with the system-Type and order in minimum-
phase systems are as follows

Start phase =—-90N degrees ONLY for minimum-
phase systems

57 ENnd phase =-90(n—m) degrees
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Polar Plots (Nyquist)

* The polar plot of a sinusoidal transfer function G(jw) is a plot of
the magnitude of G(jw) versus the phase angle of G(jw) on
polar coordinates as w is varied from zero to infinity.

* Thus, the polar plot is the locus of vectors \G(ja))\LG(ja)) as
w is varied from zero to infinity.

* Note that in polar plots, a positive (negative) phase angle is
measured counter-clockwise (clockwise) from the positive real
axis.

* The polar plot is often called the Nyquist plot.

38
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Polar Plots

(Nyquist)

Im §

- Rl jar )] —=

i = 26

'/JiG { fewr) I

= i
g

Im [ Gl jew)]

|
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Polar Plots (Nyquist)

Integrator: Draw the polar plot of the following transfer function

G(s)=l
S
G(1'60)=.i 2 G(ja)):o—ji ImG(jo)]
Jo @
. £G(jo)
RelGjml=0 & Im[G(ja))]:; ”:”\ - Re[G(j)]

w—>0 Im—- - Phase is
= w—>o Im—>0 always -90 ©=0

40

2017 Shiraz University of Technology Dr. A. Rahideh



Polar Plots (Nyquist)

First order: Draw the polar plot of the following transfer function

1

G(s)=—

(5) s+1
G(jo)=—— B G(jo)=-1? @y G(jo)-—ts- |2
Jo+1 1+ ° 1+ "1+ o?

w— 0 Re —>1

w—>0 Re—>0 Note that for all o,
Re>0 and Im<0

1
1+ @”

Re[G(jw)]=

» |

w—0 Im—>0

ImG(jo)]=—=5 = {

1+ w wo—>o Im—=0

41
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Polar Plots (Nyquist)

First order

1 1 —
G —_ = . _ . _
(s) e Re[G(Ja))]_ler2 Im[G(Ja))]_lew2
IM[G(jw)]
A
R 0.5 i
e :{ €— /G(jw)

Im —> —0.5 / \
VY
! _ 1

-0.5

42
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Polar Plots (Nyquist)

Second order: Draw the polar plot of the following transfer
function

: 1
@, G(jo) =
G(s) = L 2
) $° +2(w. S+’ = (1_0)2)+ jzgwﬁ

[1_0)2j 20 W

. @

. , . W,
» Gllw) = 2\? 2 ~ 22 2
@ @ ) @
(11)2] e [%z} A

43
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Polar Plots (Nyquist)

2

Second order: G(S) = &
' $° +2{w. S+’
2
(l—z))zj (1 w00
Re[G(jo)]=———5"— m) Re[G(jw)]={0 w=0,
El—“’Z] 14022 0 o>
a)n a)n
252 (0 w—>0
: (0 ;
Im[G(jw)|=- —— . B ImG(jo)]=i%+ o=o,
1—6"2) 1402 0 0>
a)n a)n
44
Dr. A. Rahideh
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Polar Plots (Nyquist)

2
n

$° +2{w. S+’

n

Q

Second order: G(S) =

Im |

200 &
Im[G(jw)|=- —— .
Pk
), ),
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Polar Plots (Nyquist)

Transport lag: Draw the polar plot of the following transfer
function

G(s)=e™ ®mp) G(jo)=e'™ mp G(jo)=cos(Tw)- jsin(Tw)

IM[G(jw)]
A

— 3z
W =57

/ \”O» Re[G(j)]

—
W =57

— 2
W =57

46
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Polar Plots (Nyquist)
Example: Draw the polar plot of the following transfer function

e ™ Im[G(jw)]

G(s) =
(5) 1+Ts

e—jka)

G(Jo) =

1+ jTw

1 Re[G(j)]

G(Jw)| =
‘ ‘ V14T 202

ZG(jo)=-ko-tan"Tw

47
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Polar Plots (Nyquist)

Example: Draw the polar plot of the following transfer function

1 : 1
G(s) = G(Jw)=——
O=ry = U9 T GrerD y
: T : 1
G(jw)=- -
- (JC()) l+T2a)2 J C()(1+T2a)2)
-
Re
MG (jo) =T - joo
limG(jw)=0- jO
48
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General Shapes of Polar Plots

The polar plot of the following transfer function
by (joo)" +,(jeo)™ "+
8 (jo)" +a(jo) +--

. (It joTl)d+ jol,)--- SR
U= oy ar joryar jory = U

where h>m, will have the following general shapes:
1. For A=0 or type 0 systems:

The starting point of the polar plot m A
(which corresponds to w=0) is finite Type2system = Y
and is on the positive real axis. o~ P

The tangent to the polar plot at =0 is
perpendicular to the real axis.

The terminal point, which corresponds
to w=w, is at the origin, and the curve
is tangent to one of the axes. 49

1" Type 0 system
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General Shapes of Polar Plots

2. For A=1 or type 1 systems:
At w=0, the magnitude of G(jw) is infinity, and the phase
angle becomes -90°.

At low frequencies, the polar plot is asymptotic to a line
parallel to the negative imaginary axis.

Im |
Type 2 system
At @ =0, the magnitude becomes “r°
zero, and the curve converges to the Re
origin and is tangent to one of the
axes. \\
Type 0 system

50
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General Shapes of Polar Plots

2. For A=2 or type 2 systems:
At w=0, the magnitude of G(jw) is infinity, and the phase
angle becomes —180°.

At low frequencies, the polar plot may be asymptotic to the
negative real axis.

Im |
Type 2 system
At @ =0, the magnitude becomes “r°
zero, and the curve converges to the Re
origin and is tangent to one of the
axes. \\
Type 0 system

51
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Drawing Nyquist Plots with MATLAB

Consider a transfer function as

NUM(S
G(s) = ()
den(s)
The Nyquist plot in MATLAB is obtained using the following
command:

nyquist(num,den,w)

Where num is the vector corresponding to the coefficients of the
numerator, den is the vector corresponding to the coefficients of
the denominator and w is the user-specified frequency vector.

52
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Drawing Nyquist Plots with MATLAB

Example: Consider a transfer function as
1
s*+0.8s+1

The Nyquist plot in MATLAB is obtained using the following
command:

G(s) =

num=[1];

den=[1 0.8 1];

nyquist(num,den)

title('Nyquist Plot of G(s) = 1/(s"2 + 0.8s + 1)')

53
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Drawing Nyquist Plots with MATLAB
1
s +0.8s+1

Example: Consider a transfer function as G(s) =

Nyquist Plot of G(s) = 1/(s2 +08s+1)

1.5

Imaginary Axis

_ 1 i 1 I
-1 -0.5 0 0.5 1 15
Real Axis

54
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Log-Magnitude versus Phase Plots
(Nichols Plots)

* Another approach to graphically
portraying the frequency-response
characteristics is to use the log-
magnitude-versus-phase plot,

G(jw) in dB
A

* which is a plot of the logarithmic . /G(jo)
magnitude in decibels versus the
phase angle.

* Inthe log-magnitude-versus-phase
plot, the two curves in the Bode
diagram are combined into one.

95
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Log-Magnitude versus Phase Plots
(Nichols Plots)

(a) Bode diagram; (b) polar plot; (c) log-magnitude-versus-phase
plot of a second order system.

6 -
3 I T T 1 Im A wnl orl
M, 1 —
M.
0 * y
| w=> 0
UJ,.- 1
-5 — P w=0
m
[ - ]
E 0="0 Re _2 3
SEETI . \ S 6| —
4
.:W,-
\ 9 |- ]
0° @
\ 12 b Y ]
©|-90° ©n o, "“
-15 |
L .|\ ~180° —90° 0°
—180°
0.2, 050, o, 20, /G
)]
(a) (b) () 56

2017 Shiraz University of Technology Dr. A. Rahideh



Nyquist Stability Criterion

The Nyquist stability criterion determines the stability of a
closed-loop system from its open-loop frequency response
and open-loop poles.

Consider the following closed-loop transfer function

C(s)  G(s)
R(s) 1+G(s)H(s)

For stability, all roots of the characteristic equation must lie in
the left-half s plane. 1+G(s)H(s)=0

The Nyquist stability criterion relates the open-loop
frequency response G(Jw)H(jw) to the number of zeros and
poles of 1+G(s)H(s) that lie in the right-half s plane.

o7
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Conformal Mapping

Consider the following open-loop transfer function

G(s)H(s) = 2

The characteristic equation is s-1
2 s+l

s—-1 s-1

0

F(s)=1+G(s)H(s) =1+

The function F(S) is analytic everywhere in the s plane except
at its singular points.

For each point of analyticity in the s plane, there corresponds a
point in the F(S) plane.

For example, if s=2+]1, then F(S) becomes

. 2+ 11+1 .
F(2+11)=2+}1_1=2—11 .
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Conformal Mapping

For a given continuous closed path in the s plane, which does not
go through any singular points, there corresponds a closed curve

in the F(s) plane.
Mapping

s=o+ jo mmmmm) F(s)=Re[F(s)]+jIm[F(s)]
Jjo A b Im3 “_ F(s) Plane
72
Jl /;:3
\]
A o |
o0 0 1 2 o -2 -
—l
o=-—1
2
s+1
F(s) = - B oz
(a) (b) 59
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Encirclement of the Origin

e Suppose that representative point s traces out a contour in
the S plane in the clockwise direction.
1. If the contour in the s plane encloses the pole of F(S), there is
one encirclement of the origin of the F(S) plane by the locus
of F(S) in the counter-clockwise direction.

Jw
j2 5 Plane
A
il o
4 " |,
-2 =1 0 1 2 3 @
—l ~—— —1

60
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Encirclement of the Origin

e Suppose that representative point s traces out a contour in

the S plane in the clockwise direction.
If the contour in the s plane encloses the zero of F(S), there is

one encirclement of the origin of the F(S) plane by the locus

2.

of F(s) in the clockwise direction.

Im A
7=

Cl
ﬂf

| | | o

—1 0 A’fl 2 3 Re
Py —1

-2 61
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Encirclement of the Origin

e Suppose that representative point s traces out a contour in
the S plane in the clockwise direction.
3. If the contour in the s plane encloses both the zero and the

pole OF if the counter encloses neither the zero nor the pole
of F(s), then there is no encirclement of the origin of the F(s)
plane by the locus of F(s).

Jjo | Im
J2 2
A B
jl 1 <
D.l'
5 4 L, | I
-2 -1 0 1 2 3 o -1 0|41 2 3 Re
I —l | -1 ; I
D C Br Jw | m
£ 2 F 2
=2 — -2
H Jl G 1 B
D C

——
b
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Encirclement of the Origin

The direction of encirclement of the origin of the
F(s) plane by the locus of F(S) depends on whether
the contour in the S plane encloses a pole or a zero.

If the contour in the S plane encloses equal numbers
of poles and zeros, then the corresponding closed
curve in the F(s) plane does not encircle the origin of
the F(s) plane.

63
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Mapping

Let F(S) be a ratio of two polynomials in s.

Let P be the number of poles of F(s) and Z be the number of
zeros of F(S) that lie inside some closed contour in the s plane,
with multiplicity of poles and zeros accounted for.

Let the contour be such that it does not pass through any
poles or zeros of F(s).

This closed contour in the s plane is then mapped into the F(S)
plane as a closed curve.

The total number N of clockwise encirclements of the origin
of the F(S) plane, as a representative point s traces out the
entire contour in the clockwise direction, is equal to Z-P.

The mapping just gives the difference of Z and P,
N=Z2-P NOT P and Z

64
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Mapping
N >0 >P Clockwise encirclements
N=Z-P { -

N <O » /<P Counter-clockwise encirclements

* The number P can be readily determined for F(s) =1+G(s)H(s)
from the function G(s)H(s).

 Therefore Z (the number of poles of the closed-loop system

lie inside some closed contour in the S plane) can be found
from P and N.

65
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An Important Note

Instead of mapping into F(s) =1+G(s)H(s) the
mapping is performed into 7 (s)=G(s)H(s).

Therefore, instead of counting the number of
clockwise encirclements of the origin, the
number clockwise encirclements of the -1
point is counted.

66
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Procedure of Nyquist Stability Criterion,
Form loop transfer function G(s)H(s).

Form a semi-circle closed contour in the right-half of s plane that
does not pass though the poles or zeros of G(S)H(S). o

s plane

The direction of the semicircle is clockwise.

Map the contour in s plane into 77(S)=G(s)H(s). 0

Find the number of poles of G(S)H(S) in the right-half /
S plane, i.e. P.
Count the number of clockwise encirclements of -1 point, i.e. N.
Find Z=N+P which is the number of closed-loop poles in the
right-half s plane.

If Z=0, the closed-loop system is stable.

67
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Summary of Nyquist Stability Criterion®; Q

Z=N+P
where
Z number of zeros of 1+G(S)H(S) in the right-half s plane
N number of clockwise encirclements of the —1+]0 point

P number of poles of G(S)H(S) in the right-half s plane

If Z=0, the closed-loop system is stable.

68
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Some Points

If there is any poles or zeros of G(S)H(S) on the imaginary axis, the
semi-circle in right-half of s plane should encircle them

jo

s plane

If the locus of G(Jw)H(jw) passes through the —1+]0 point, then zeros
of the characteristic equation, or closed-loop poles, are located on
the jw axis.

69
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Nyquist Stability Criterion

* Example: Discuss on the stability of the following system using
Nyquist stability criterion

R(s) 6 C(s)

70
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Nyquist Stability Criterion

Solution: R(s) 6
C %S (s+1)(s+2)(s+3)

1. Form loop transfer function G(s)H(s).

6
SO = s+ 25 +3)
* The poles of G(S)H(S)are s=-1 S=-2 S=-3

* G(s)H(s) has no zero.

71
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Nyquist Stability Criterion

Solution: R(s) é 3 6
(s+1)(s+2)(s+3)

2. Form a semi-circle closed contour in the right-half of s plane
that does not pass though the poles or zeros of G(S)H(S).

jo
s plane
E
e A _, o
-3 -2 -1 0
B
D C

72
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).
jo

Section AD: S= RR el? s plane
I(8)=GOHE) = ———

(S +1)(S+2)(S+3) % (')E A , o

| B
r(Re/)=— e _
(Re/ +1fRe!’ +2)|Re +3) of—"C
F(Rew)z N —ge ¥
73
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

%
-3 -2 _

Section AD: s= R e F(Rej‘g):ge‘j?’g

R—w

; i Im|(/”
A—> A r=cel rAn[ ] Iplane
B— B’ [ =gel™?

"

C-o>C [ =¢e’” — COA' > Re[I']
- -

DD’ [ =gel¥?
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

Section DE: S=—jw jo
s plane
6
I'(s)=G(s)H(s) =
(&) =GO ) = e 21549 ’
- — - E A _, o
- 6 -3 -2 -1 0
I’ —
(J&)) (—ja)+1)(—ja)+2)(—ja)+3) y ;
D
: 6
[’ —
(Ja)) 6(1 a)) ja)(ll a))
75

2017 Shiraz University of Technology Dr. A. Rahideh



Solution:

3. Map the contour in s plane into 77 (S)=G(s)H(s). ’
E A
0

%
-3

Section DE: S=—Jw

6

T30~ i) ol o) D

36(1— )
2

36(1— w?)

Re[7"(jo)]=

2

+ o’ (11- o)

60(l1-0?)
2

Im[7"(jo)] = 36(1- o f + 0?(11- 0?)

76
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Nyquist Stability

Solution:

Criterion

3. Map the contour in s plane into 77 (S)=G(s)H(s).

Section DE: S=—Jw

36(1— )
2

Re[F(ja))] ) 36(1— o’ )2 + @ (11— a)z)

60(l1- o)
2

=
36(1— )

Im[7"(joo)]=

2

+0?(11-o?)

=

0 W —> 0

~01 w=+11

0 w=1

1 w=0

0 0 —>

0 w=+/11

06 w=1

0 w=0 77
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Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).
SectionDE: s=_j@

0 @ —> o0

-01 w=+11
Re[I"(jo)]=- @

0 w=1

1 w=0

0 w—>0 __

0 w=+11" "
Im|{/"(jw)|=+

rGo)l=y . _,
0 w=0

78
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Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

6%
-3 -2

I'plane

S Re[7]

79
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Solution:

4. Find the number of poles of G(S)H(S) in
the right-half s plane, i.e. P.

I'plane
) 1
> Re[F] P— O
P =
”
oo
-
-
80
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Solution:
5. Count the number of clockwise encirclements
of -1 point, i.e. N.

I'plane

El

> > Re[F] - N

Il
o

81
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Solution:
6. Find Z=N+P whichis the number of
closed-loop poles in the right-half s plane.

I'plane
E’ —
. Re[I] £=0
7’
, [
_-* The system is
stable.
82
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Nyquist Stability Criterion

 Example: Discuss on the stability of the unity feedback system
with the following forward path transfer function using Nyquist
stability criterion

s-1
s(s+1)

R(s) E(s) C(s)
G(s) 9 >

G(s) =

83
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Solution:

GS)H (s) =—> =
s(s+1)
* The poles of G(s)H(s)are s=0 5 =—1

* The zero of G(S)H(S) is

w
Il
=

84
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Nyquist Stability Criterion

. R E C(s)
Solution: ©) © G(s) o >

2. Form a semi-circle closed contour in the right-half of s plane
that does not pass though the poles or zeros of G(S)H(S).

Jo

s plane

85
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

Section AB: s= R e’

R—w

I'(s)=G(s)H(s) = Siz :?)

(Re¥ 1)
RejH(RejeJrl)

F(Re"g)z

F(Rew): ge 1l

86
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

Section AB: s= R e F(Rew):ge‘jg

A— A I =¢el® A

BB [ =gel™?

87
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

Section BC: S=—jow t s plane
1) -6EH(E - '
s(s+1) T
i)
— jo(- jo+1) B
20+ j0?-1)
I'iow)=
(JC()) a)(a)Z_l_l)
88
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

Section BC: S=—Jw

: 20 ) e Im[7"]
RE[F(JCO)]Z a)(a)Z +1) =<1 w=1 A Iplane
=0 i
. B’%l 2 . Re[I]
((02 _1) 0 0o i
Im[r(jw)]:a)(a)erl) =40 w=1
—o w=0
. 89
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

SectionCD: s= ¢ el

&c—0

I'(s)=G(s)H () = ==Y

S(S-l—l) _,1( o
F(gejg): (geje —1)
geje(gej‘9+1)
r(eei?)=Rei" ~-2<0<0

90
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Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into 77 (S)=G(s)H(s).

SectionCD: 5= £ e p(gei?)=Reit?
£ IT[F]
-2<60<0 ;
I’plane
C-»>C' 6=-Z
D->D" 6=0
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Nyquist Stability Criterion

Solution:

3. Map the contour in s plane into 77 (S)=G(s)H(s).
Im| /"]

92
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Nyquist Stability Criterion

Solution:
4. Find the number of poles of G(S)H(S) in
the right-half s plane, i.e. P.

Im| /"]

P

0
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Nyquist Stability Criterion |

Solution:
5. Count the number of clockwise encirclements
of -1 point, i.e. N.

Im| /"]
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Nyquist Stability Criterion

Solution:
6. Find Z=N+P which is the number of

closed-loop poles in Ech]e right-half s plane.
Im|I”

/=1

The system is
unstable.
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Nyquist Stability Criterion

* Example: Using Nyquist stability criterion find the range of positive
K in which the following system is stable

R(S)

(s+1)(s+2)(s+3)

96
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Nyquist Stability Criterion

Solution:
If k>10 m» N=2 ®m) 7Z=2 m) |Unstablesystem
If k=10 B) | Critically stable system

If k<10 mp N=0 m) Z=0 m) |Stablesystem

I'plane
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Nyquist Stability Criterion

* Example: Using Nyquist stability criterion find the range of positive
K in which the following system is stable

98
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Nyquist Stability Criterion

e Solution: The characteristic equation is expressed as

2
A(s) =1+ 1+ ks 0 » S +s+1+ks:
s(s+1) s(s+1)
Divide by the parts without k ks

_ 1+ =0
+ ks =0 » s +5+1

G(s)H(s) = R(s) ce)
S s(s+1)
It is the virtual loop transfer function. ‘ 1+ ks
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Nyquist Stability Criterion

Important note:
* To investigate the stability of system with a variable, e.g. k, using

Nyquist stability criterion, the variable should be as a gain in the
loop transfer function.

N ()

G(s)H k ——=
(S)H(s) = D(s)

* Ifitis not the case, the virtual loop transfer function should be
formed.

100
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Phase Margin & Gain Margin

1. Gain Margin (GM):
* Assume @, is the frequency in which ZGH (jw,)=-180

@, is called phase crossover frequency.

P

1

 The gain margin is obtained as GM = _
GH (ja,)

e Orinthe case of dB it is GM :_‘GH(jwp)‘dB

101
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Phase Margin & Gain Margin

2. Phase Margin (PM):

* Assume @, is the frequency in which ‘GH (ng)‘ =1 or

\GH(ng)\dB =0

@, is called gain crossover frequency.

g

* The phase margin is obtainedas ~ PM =180+ ZGH (ja,)

Phase and gain margins are useful in minimum-phase systems.

102
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Phase Margin & Gain Margin

In @ minimum-phase system to have stability both phase margin and
gain margin in dB should be positive. i.e.

PM =180+ ZGH (jw,) >0 > —-180< ZGH (jw,) <0

and

GM :—‘GH(ja)p)‘dB >0 mp GM =|GH(jm,) <1

Note that phase and gain margins cannot be used for stability
analysis in non-minimum-phase systems.

103
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7075

E

7,

Phase Margin & Gain Margin in Polar
Diagram

Consider a minimum-phase system with the following polar diagram

. 1
Im|GH =
m[ A(Ja))] GM —M>1 GMdB>O

P PM =180+ ZGH (j®,) >0

» Re[GH(]w)]

The system is stable.

104
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Phase Margin & Gain Margin in Polar
Diagram

In polar diagram of minimum-phase systems, moving from zero
frequency to infinity frequency, if point -1 is located on the left side
of the trajectory (from zero to infinity frequency), the system is

stable. _
IM[GH (jw)]
A

» Re[GH (jo)]

ZGH(jw,) ,/ This technique cannot be used in
g non-minimum-phase systems.
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Phase Margin & Gain Margin in Polar

Diagram

Example: Consider the following polar diagram of a minimum-phase

system. Discuss on the stability if

1) Point -1 is at point A Im[GAH(ja))]

2) Point-1is at point B
3) Point-1is at point C

/ _
! / 7’

w—0 1 :IIB / o ﬁ\OO \ \ .
= ‘. : —»Re[GH (Jw)]
A |‘ U“ o ' "
\ \ ’ , Il
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Phase Margin & Gain Margin in Polar

Diagram

Solution:
1. A=-1 PM<O0 unstable
2. B=-1 PM>0& GM>0 stable 'm[GT(J'CO)]
3. C=-1 PM<0&GM<Q unstable ___}._

¢ ¢ »Re[GH(jw)]

\ ‘\\ O ) I’ l:'
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Relative Stability using Phase Margin &5
Gain Margin

* Comparing two stable minimum-phase systems, the one having
higher gain margin or in the case of equal gain margins, the one
having higher phase margin is more stable.

* In the following examples system | is more stable.

IM[GH (jw)] IM[GH (jw)]
3 Case 1 A Case 2
1 \\\\\ ,,,/// \\\\\\ PM I
> Re[GH (jo)] ~1 , ‘\* > Re[GH(jw)]

~ 10

w—>0
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Phase Margin & Gain Margin in Bode

Diagrams

Example: Calculate the gain and phase margins from the following
Bode diagrams

=0 .
B Al TS 3 U DTS U O N N N i
5 0 =
3 &
3 __0_ .............................................. ............................................. —
g= =
%!:I -
S P AP HP e e e .
= D
60 =
10" 10" 10"

o (rad/s) 109
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Phase Margin & Gain Margin in Bode

Diagrams
Solution: Find the phase and gain crossover frequency (a)IO and a)g)

=0 T
Z o —
2 I3
a)g — 0.78 rad/S -E T A S A S I _____ _____________________________________________ _
T ISR SO N O TN 1
= v
_ S SRR B A N N I N
e Wq10° 10"

w, = 2.2 rad/s

10” 10° @, 10'
o (rad/s)
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Phase Margin & Gain Margin in Bode
Diagrams

Solution: Find the gain margin

20

W, = 2.2 rad/s

GM s =—{GH (j,)|

H H H H H HE | HEY H H H H HE
10 10° @, 10'
o (rad/s)
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Phase Margin & Gain Margin in Bode
Diagrams

Solution: Find the phase margin

20

=

W, =(0.78 rad/s

Magnitude (dB)
|
o=

PM =180+ /GH (jw,)
~180-137
= 43°

o (rad/s)
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A Few Points on Phase Margin & Gain
Margin

Gain margin of first- and second-order systems is infinity since
Bode phase diagram never reaches -180 degrees.
Non-minimum-phase system with negative phase margin and/or
negative gain margin MAY be stable.

In minimum-phase systems with several phase and/or gain
margins, only one positive phase margin and one positive gain
margin leads to stability.

In practice for good stability PM > 45 degrees and GM > 6 dB.
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