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Introduction 
• As mentioned, the first step in analyzing a control system was 

to derive a mathematical model of the system.  
 

• Once such a model is obtained, various methods are available 
for the analysis of system performance. 
 

• Typical Test Signals 
• Step functions 

 

• Ramp functions 
 

• acceleration functions 
 

• impulse functions  
 

• sinusoidal functions 
 

• White noise 
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Transient Response and Steady-State 
Response 

• The time response of a control system consists of two parts:  
• the transient response and  
• the steady-state response. 

 
• Transient response means the part of response goes from the 

initial state to the final state. 
 

• By steady-state response, we mean the manner in which the 
system output behaves as t approaches infinity. 
 

• Thus the system response c(t) may be written as 

)()()( tctctc sstr 
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Stability of LTI Systems 

• A control system is in equilibrium if, in the absence of any 
disturbance or input, the output stays in the same state. 
 

• A linear time-invariant control system is stable if the output 
eventually comes back to its equilibrium state when the 
system is subjected to an initial condition.  
 

• A linear time-invariant control system is critically stable if 
oscillations of the output continue forever.  
 

• It is unstable if the output diverges without bound from its 
equilibrium state when the system is subjected to an initial 
condition. 
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First-Order System 

Consider the first-order system shown below. Physically, this 
system may represent an RC circuit. 
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If the input is a unit-step 
 
 
The output is calculated as 
 
 
 
 
 
Taking inverse Laplace transform 
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Unit-Step Response of First-Order Systems 
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If the input is a unit-ramp 
 
 
The output is calculated as 
 
 
 
 
 
Taking inverse Laplace transform 
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Unit-Ramp Response of First-Order Systems 
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If the input is a unit-ramp 
 
 
The output is calculated as 
 
 
 
 
 
Taking inverse Laplace transform 
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Unit-Impulse Response of First-Order Systems 
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Assume that the error is defined as 
 
 
And the steady-state error is calculated by 
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Steady-State Error 
First-Order Systems 
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Using unit-impulse, unit-step, unit-ramp the following outputs are 
obtained: 
 
 
 
 
 
Since unit-impulse is the derivative of unit-step and unit-step is the 
derivative of unit-ramp, the corresponding outputs have the same 
relation in LTI systems: 
 
 
 
 12 

Important Property of LTI Systems 
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• Superposition 
 
 
 

• Homogeneity or Scaling 
 
 
 

• Derivative  
 
 

• Integration 
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Important Property of LTI Systems 
 

 

Linear 

System 

Input Output 

)(1 tu  )(1 ty  

 
 

Linear 

System 

Input Output 

)(2 tu  )(2 ty  

 
 

Linear 

System 

Input Output 

)()( 21 tutu   )()( 21 tyty   

 
 

Linear 

System 

Input Output 

)(1 tu  )(1 ty  

 
 

Linear 

System 

Input Output 

)(1 tu  )(1 ty  

 
 

Linear 

System 

Input Output 

)(1 tu  )(1 ty  

 
 

Linear 

System 

Input Output 

)(1 tu
dt

d  )(1 ty
dt

d  

 
 

Linear 

System 

Input Output 

)(1 tu  )(1 ty  

 
 

Linear 

System 

Input Output 

dtu 1
  dty1

 

2017                                           Shiraz University of Technology   Dr. A. Rahideh 



14 

Second-Order System 

Consider the second-order system shown below. Physically, this 
system may represent DC servo drive system. 
 
 
 
 

 

      : Undamped natural frequency 
 
    : Damping ratio 
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Second-Order System 

The dynamic behaviour of the second-order system can be described 
in terms of two parameters   and n. 

 

 

1. Undamped case 

 

2. Under-damped case 

 

3. Critically damped case 

 

4. Over-damped case 
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Second-Order System 
1. Undamped case 

In this the oscillation continues indefinitely. 
 
 
The roots of the denominator are on the imaginary axis 
 
 

The unit-step response is obtained as  
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Second-Order System 
2. Under-damped case 

• In this case the closed-loop poles are complex conjugates and lie 
in the left-half s plane. 
 
 

  
• The transient response is oscillatory. 

 
 

• The closed-loop transfer function can be written as 
 
 

 
where                                is called the damped natural frequency. 
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Second-Order System 
2. Under-damped case 

The unit-step response of this case is as follows  
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Second-Order System 
3. Critically-damped case 

• In this case the two poles are equal. 
 
 

  
 

• The closed-loop transfer function can be written as 
 
 

 
• The unit-step response of this case is as follows  
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Second-Order System 
4. Over-damped case 

In this case the two poles are negative real and unequal. 
 
 

  
 

• The closed-loop transfer function can be written as 
 
 

 
• The unit-step response of this case is as follows  
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Second-Order System 
4. Over-damped case 

• The unit-step response of this case is as follows  
 
 
 

• Taking inverse Laplace transform yields 
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Definitions of Transient-Response 
Specifications 

In specifying the transient-response characteristics of a control 
system to a unit-step input, it is common to specify the following: 
 
1. Delay time, td 

 

2. Rise time, tr 

 

3. Peak time, tp 

 

4. Maximum overshoot, Mp 

 

5. Settling time, ts 

 

Step response  
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1. Delay time, td :The delay time is the time required for the 
response to reach half the final value the very first time. 
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Definitions of Transient-Response 
Specifications 

Step response  
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2. Rise time, tr: The rise time is the time required for the response to 
rise from 10% to 90%, 5% to 95%, or 0% to 100% of its final value. 
For underdamped second order systems, the 0% to 100% rise time is 
normally used. For overdamped systems, the 10% to 90% rise time is 
commonly used. 
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Definitions of Transient-Response 
Specifications 
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3. Peak time, tp: The peak time is the time required for the response 
to reach the first peak of the overshoot. 
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Definitions of Transient-Response 
Specifications 
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4. Maximum overshoot, Mp: The maximum overshoot is the 
maximum peak value of the response curve measured from unity. If 
the final steady-state value of the response differs from unity, then it 
is common to use the maximum percent overshoot. It is defined by 
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Definitions of Transient-Response 
Specifications 
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5. Settling time, ts: The settling time is the time required for the 
response curve to reach and stay within a range about the final value 
of size specified by absolute percentage of the final value (usually 2% 
or 5%). The settling time is related to the largest time constant of the 
control system. 
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Definitions of Transient-Response 
Specifications 

Step response  
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Rise time tr: By letting                  in an under-damped system 
 
 
                                                                                     
 
 
                                                                          since                         so 
 
 
 
 
 

                                            where  
28 

Second-Order Systems and Transient-
Response Specifications 
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Peak time tp:   Assume again the system is under-damped 
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Second-Order Systems and Transient-
Response Specifications 
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Maximum overshoot Mp:   Assume again the system is under-
damped 
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Second-Order Systems and Transient-
Response Specifications 
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Settling time ts:   Assume again the system is under-damped 
 
 
                                                                                     
 
Consider the time constant is  
 
                                 (2% criterion) 
 

 
                                 (5% criterion) 
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Example:   Consider a system with the following block diagram. 
Calculate k and kg so that the maximum overshoot remains under 
20% and the peak time happens before the first second for a unit-
step input. 
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Example:                                      to have                             and   
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Example:                                      to have                             and   
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Example:                                      to have                             and   
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36 

Second-Order System 
 The unit-impulse response of the second-order system can be easily 

obtained by the inverse Laplace transform of 
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The maximum overshoot for the unit-impulse response of the under-
damped system occurs at 
 
 
 
 
 
The maximum overshoot is 
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The peak time (tp) and maximum overshoot (Mp) of a unit-step 
response can be obtained from the unit-impulse response  
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Impulse response  
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• The closed-loop transfer function of higher-order systems can be 
expressed using the following general form: 

 
 
 
 
• Factorizing the numerator and denominator yields 
 
 
     
                                                                                 
• The roots of the numerator are the zeros (zj where j=1,2,…,m) of 

the system and the roots of the denominator are the poles (pi 
where i=1,2,…,n) of the system. 
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• Assuming all poles are real and distinct, for a unit-step input the 
output is 

 
 
 
 

where ai is the residue of the pole at s = -pi 

 
• If the system involves multiple poles, then C(s) will have multiple-

pole terms. 
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• If all closed-loop poles lie in the left-half s plane, the relative 
magnitudes of the residues determine the relative importance of 
the components in the expanded form of C(s). 
 

• If there is a closed-loop zero close to a closed-loop pole, then the 
residue at this pole is small and the coefficient of the transient-
response term corresponding to this pole becomes small. 
 

• A pair of closely located poles and zeros will effectively cancel 
each other. 
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Higher-Order Systems 
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• If a pole is located very far from the origin, the residue at this pole 
may be small. 
 

• The transients corresponding to such a remote pole are small and 
last a short time.  
 

• Terms in the expanded form of C(s) having very small residues 
contribute little to the transient response, and these terms may 
be neglected.  
 

• If this is done, the higher-order system may be approximated by a 
lower-order one. 
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• Consider the case where the poles of C(s) consist of distinct real 
poles and pairs of complex-conjugate poles. Therefore we have 

 
 
 
 

• The unit-step response c(t) is then 
 
 
 
 
 
 

• If all poles have negative real part, the system is stable and   
43 
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• If the ratios of the real parts of the poles exceed 5 and there are 
no zeros nearby, the poles nearest the j axis will dominate the 
transient response behaviour. 
 

• Example: In the following system the dominant pole is 0.5, 
because there is no zero nearby (near 0.5) and the ratio of 
poles is 6 which exceeds 5. 
 
 

• Example: In the following system a zero is near the pole 0.5 
therefore the dominant pole is not 0.5 but it is 3. 
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• If all closed-loop poles lie in the left-half s plane, the system is 
stable. 
 
 
 
 
 

• If any of the closed-loop poles lie in the right-half s plane, the 
system is unstable.  
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Stability Analysis in the Complex Plane 
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Routh’s stability criterion tells us whether or not there are 
unstable roots in a polynomial equation without actually solving 
for them. The procedure is  as follows: 
 
1. Consider the following close-loop system 

 
 
 
 

2. Write the characteristics equation 
 
 
Where the coefficients are real quantities. We assume that an is 
not zero; i.e. any zero root has been removed. 46 

Routh’s Stability Criterion 
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3. If any of the coefficients are zero or negative in the presence 
of at least one positive coefficient, a root or roots exist that are 
imaginary or that have positive real parts. Therefore, in such a 
case, the system is not stable. 
 

4. If all coefficients are positive, arrange the coefficients of the 
polynomial in rows and columns according to the following 
pattern: 

      The number of rows is n+1. 
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5. The coefficients to be calculated are listed in the table  
 

 
 
 
 
 
 where 
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• To simplify the calculation an entire 
row may be divided or multiplied by a 
positive number, e.g. k > 0. 
 

• Routh’s stability criterion states that 
the number of roots with positive real 
parts is equal to the number of 
changes in sign of the coefficients of 
the first column of the array.  
 

• The necessary and sufficient condition 
that all roots lie in the left-half s plane 
is that all terms in the first column of 
the array have positive signs.  49 
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Example: Apply Routh’s stability criterion to the following 
polynomial: 
 
 
1. Form the table and simplify 
      (second row is divided by 2) 
 

50 

Routh’s Stability Criterion 

05432 234  ssss

0

1

2

3

4

042

531

s

s

s

s

s

01

1

10  



nn

nn asasasa 

0

3

2

7531

1

6420

s

s

s

aaaas

aaaas

n

n

n

n













0

1

2

3

4

021

531

s

s

s

s

s

2017                                           Shiraz University of Technology   Dr. A. Rahideh 



Solution:  
2. Calculate the remaining  
       coefficients 
 

51 

Routh’s Stability Criterion 

5

3

51

021

531

0

1

2

3

4

s

s

s

s

s


1

0

4321

3

4321

2

7531

1

6420

gs

ccccs

bbbbs

aaaas

aaaas

n

n

n

n

















1
1

2131
1 


b

1

5041
2

a

aaaa
b




3
1

5121
1 


c

1

3021
1

a

aaaa
b




5
1

0151
2 


b

1

2131
1

b

baab
c




5
3

0153
1 




d

1

2121
1

c

cbbc
d




2017                                           Shiraz University of Technology   Dr. A. Rahideh 



Solution:  
• The first column numbers have changed their signs twice; 

therefore there are two roots with positive real parts. 
• The system is therefore unstable.  
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Special Case 1: If a first-column term in any row is zero, but the 
remaining terms are not zero or there is no remaining term, then 
the zero term is replaced by a very small positive number e and 
the rest of the array is evaluated. 
 
Example:  
 
 
 
If the sign of the coefficient above the zero (e) is the same as that 
below it, it indicates that there are a pair of imaginary roots. 
Actually, This example has two roots at             . 
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If, however, the sign of the coefficient above the zero (e ) is 
opposite that below it, it indicates that there is one sign change. 
 
Example:  
 
 
 
 
 
 
There are two sign changes of the coefficients in the first column. 
So there are two roots in the right-half s plane. This agrees with 
the correct result indicated by the factored form of the polynomial 
equation. 54 
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Special Case 2: If all the coefficients in any derived row are zero, it 
indicates that there are roots of equal magnitude lying radially 
opposite in the s plane (that is, two real roots with equal 
magnitudes and opposite signs and/or two conjugate imaginary 
roots).  
In such a case, the evaluation of the rest of the array can be 
continued by forming an auxiliary polynomial with the 
coefficients of the last row and by using the coefficients of the 
derivative of this polynomial in the next row.  
Such roots with equal magnitudes and lying radially opposite in 
the s plane can be found by solving the auxiliary polynomial, 
which is always even.  
For a 2n-degree auxiliary polynomial, there are n pairs of equal 
and opposite roots. 55 

Routh’s Stability Criterion 
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Example:  
 
 
 
 
 

• The terms in the s3 row are all zero. (Such a case occurs only in 
an odd-numbered row.) 

• The auxiliary polynomial is formed from the coefficient of the s4 
row: 
 

• which indicates that there are two pairs of roots of equal 
magnitude and opposite sign (that is, two real roots with the 
same magnitude but opposite signs or two complex conjugate 
roots on the imaginary axis). 56 
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Solution:  
 
• The derivative of P(s)  with respect to s is 
 
• The terms in the s3 row are replaced by the coefficients of the 

last equation, i.e. 8 and 96. 
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Solution:  
 
• We see that there is one change in sign in the first column of 

the new array.  
• Thus, the original equation has one root with a positive real 

part. 
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Example: Consider the following system. Determine the range of K 
for stability. 
 
 
• The characteristics equations is 
• The array of coefficients becomes 

59 

Application of Routh’s Stability Criterion 
to Control-System Analysis 
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1. Steady-State Response 
 
 

2. Steady-State Error 
 

                                           or 
 

60 

Some Definitions 

)(lim)()( tcctc
t

ss




)(lim)( tete
t

ss


 )(lim)(
0

ssEte
s

ss




 
 

G(s) 
)(sE  )(sC  )(sR  

+ _ 

2017                                           Shiraz University of Technology   Dr. A. Rahideh 



3. System Type: Consider the unity-feedback control system with 
the following open-loop transfer function G(s): 

 
 
 
 
• A system is called type 0, type 1, type 2, …, if N=0, N=1, N=2, 

…, respectively. 
 
 
 
 
• In non-unity feedback control system, the system type is 

obtained from the open-loop transfer function G(s)H(s). 61 
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1. Proportional controller (P) 

 
2. Proportional-Integral controller (PI) 

 
3. Proportional-Derivative controller (PD) 

 
4. Proportional-Integral-Derivative controller (PID) 
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1. Proportional controller (P) 
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2. Proportional-Integral controller (PI) 
 
 
 

Or 
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3. Proportional-Derivative controller (PD) 
 
 
 

 
Or 
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4. Proportional-Integral-Derivative controller (PID) 
 
 
 

Or 
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Integral control action:  
• In the proportional control of a plant whose transfer function 

does not possess an integrator 1/s, there is a steady-state error, 
or offset, in the response to a step input. Such an offset can be 
eliminated if the integral control action is included in the 
controller. 

• Note that integral control action, while removing steady-state 
error, may lead to oscillatory response of slowly decreasing 
amplitude or even increasing amplitude, both of which are 
usually undesirable. 
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Derivative control action:  
Derivative control action, when added to a proportional controller, 
provides a means of obtaining a controller with high sensitivity.  
An advantage of using derivative control action is that it responds 
to the rate of change of the actuating error and can produce a 
significant correction before the magnitude of the actuating error 
becomes too large.  
Derivative control thus anticipates the actuating error, initiates an 
early corrective action, and tends to increase the stability of the 
system. 
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Unit step input: 
 
 
 
where kp is the static position error constant 
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Unit ramp input: 
 
 
 
where kv is the static velocity error constant 
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Unit parabolic input: 
 
 
 
where ka is the static acceleration error constant 
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                 input 
 
System type 

Unit step Unit ramp Unit Parabolic 

 

0 

 

1 

 

2 

 

3 

Effects of the system type on the steady-state error: 
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Example: In the following system, calculate the gain K to have steady-
state error not more than 5% in response to a unit step input.  
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