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Introduction

As mentioned, the first step in analyzing a control system was
to derive a mathematical model of the system.

Once such a model is obtained, various methods are available
for the analysis of system performance.

Typical Test Signals .

e Step functions > V

* Ramp functions |

e acceleration functions V > i

* sinusoidal functions "/\\/ R
WW ‘

* impulse functions

e White noise
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Transient Response and Steady-State
Response

The time response of a control system consists of two parts:
* the transient response and
* the steady-state response.

Transient response means the part of response goes from the
initial state to the final state.

By steady-state response, we mean the manner in which the
system output behaves as t approaches infinity.

Thus the system response c(t) may be written as

C(t) = C, (1) + .o 1)
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Stability of LTI Systems

A control system is in equilibrium if, in the absence of any
disturbance or input, the output stays in the same state.

A linear time-invariant control system is stable if the output
eventually comes back to its equilibrium state when the
system is subjected to an initial condition.

A linear time-invariant control system is critically stable if
oscillations of the output continue forever.

It is unstable if the output diverges without bound from its
equilibrium state when the system is subjected to an initial
condition.
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First-Order System

Consider the first-order system shown below. Physically, this
system may represent an RC circuit.

C(S) ~ 1 C(S) =Vc (S)
R(s) Ts+1 R(S) =V (s)
S
T =RC
R(s) E(s) 1 C(s)

il R(s) 1 C(s)
Ts ‘
E— | " Ts+1 g
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Unit-Step Response of First-Order Systems

If the input is a unit-step

R(s)=

The output is calculated as
11

Ts+1s

T 1 1

C(s) =

C(s)=2-

s Ts+l s s+1

Taking inverse Laplace transform

ct)=1-e™""  for t>0

— le— 63.2%

— [&—— 86.5%

98.2%
99.3%

o le—
= [e—

\4

3T 4

(€)]
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Unit-Ramp Response of First-Order Systems

If the input is a unit-ramp

The output is calculated as

1 1
C(s)= —
) Ts+1s°
1 T T°
C(S):_Z__+

S s Ts+1

Taking inverse Laplace transform

ct)=t-T+Te""  for t>0

R(S)

C

6T

ST

4T

3T

2T

(1)
A

ct)=t—T +Te™""

| | | | »t
T 2T 3T 4T 5T 6T
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Unit-Impulse Response of First-Order Systems

If the input is a unit-ramp

R(s)=1

The output is calculated as

1
Ts+1

C(s) =

Taking inverse Laplace transform

c(t):_l_le‘”T for t>0

10

T 2T 3T 4T 5T 6T

2017 Shiraz University of Technology

Dr. A. Rahideh



Steady-State Error A
First-Order Systems

Assume that the error is defined as

R(s) E(s) 1 C(s)
e(t)=r(t)-c() —@—» Ly

And the steady-state error is calculated by

e, =lim(r()-c(t)

Input signal _ Steady-state error

Unit-Step  r(t)=1 fort>0 e(t)=e " 6. =0
Unit-Ramp  r(t)=t fort>0 e(t):T(1—e‘”T) e, =T
Unit-Impulse r(t)=o(t) e(t)=o(t)-2e™" e, =0

11

2017 Shiraz University of Technology Dr. A. Rahideh



Important Property of LTI Systems

Using unit-impulse, unit-step, unit-ramp the following outputs are
obtained:

o0 t=0 c(t):ie‘”T for t>0
n(t)=olt)= 1 -
)=t {0 otherwise L
r,(t)=1 fort>0 c,(t)=1-e""  for t>0
r,(t)=t fort>0 C,(t)=t-T+Te"" for t>0

Since unit-impulse is the derivative of unit-step and unit-step is the
derivative of unit-ramp, the corresponding outputs have the same

relation in LTI systems: d
d (t) ——) Cl(t)=acz(t)

rl(t) = a I

12
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Important Property of LTI Systems

Superposition input linewr | Outut
 ——_ —
u, (t) System y, (t) Input Linear Output
e —
Input _ Output uO+u,O] Yy ©+y,0
Linear P
System _/
u, (t) y,(t)
Homogeneity or Scaling
Input
Input Linear Output» A Linear Output»
System System
u, (t) y.(t) au,(t) ay(t)
Derivative
Input : Output Input : Output
Linear Linear
System d System d >
u, () % LI LI
. dt dt
Integration
| |
nput Linear Output nput Linear Output>
u, (1 System V,(0) Juydt System [yt
13
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Second-Order System

Consider the second-order system shown below. Physically, this
system may represent DC servo drive system.

C(s) o’

n

R(S) S°+2lw S+’

Standard Form

@, : Undamped natural frequency

¢ : Damping ratio

R(s) E(s) . C(s) R(s) 2 C(s)

> . > > n >
s(s+2¢ @,) I ‘ % +2(w S+

14
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Second-Order System

The dynamic behaviour of the second-order system can be described
in terms of two parameters ¢ and a,.

15

Undamped case (¢=0) ,,

Under-damped case (0< ¢ <1) 16

Critically damped case (¢ =1) '2

Over-damped case (¢ >1)

C(s) o’

n

R(S) S°+2lw S+’
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Second-Order System
1. Undamped case (¢ =0)

In this the oscillation continues indefinitely. ,
Ce)__ o
2

R(S) %+

The roots of the denominator are on the imaginary axis
Slzja)n Szz_ja)n
The unit-step response is obtained as

1 2
R(s)== mmp C(s)= 1 mm) |c(t)=1-cos(w,t) for t>0
S S +a) S
1es) 30
A
b § ja)n !
» Re(s) i
16 )(_ja)n :::722_:::2.72_:::: » o, 1
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Second-Order System

2. Under-damped case (0<¢ <1)
In this case the closed-loop poles are complex conjugates and lie

in the left-half s plane. Im(s)
cs) o ~go, + ey |
R(s) s°+2lw, s+ E [a)d
The transient response is oscillatory. E(Ya)n) R
G, o,

The closed-loop transfer function can be written as

C(s) o’ S, = (W, + o,

n

R(S) _(S—I_é/a)n—'_ja)d)(s_l_é/a)n_ja)d) Slz—élﬁ)n—ja)d

where @, =, /1-¢* is called the damped natural frequency.
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Second-Order System

2. Under-damped case (0<¢ <1)
The unit-step response of this case is as follows

R(s) = L mm) C(s)=

S

2
@; 1

$° +2¢w S+ @ S

) C(S)=%—( chl MR

s+lo, )+ (s+lw,) + o
‘ c(t)y=1-e ™" cosa)dt+Lsina)dt for t>0
J1-¢7

et 1 \/1_52
‘ c(t)—l—\/izsm[a)dtﬂan j for t>0
1-¢ ¢

18
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Second-Order System
3. Critically-damped case (¢ =1)

* In this case the two poles are equal. Im(s)
A
C(s) _ ,
R(s) s°+2w.s+w’ _&W > Re(S)

* The closed-loop transfer function can be written as

C(s) o’

n

R(S) (s+a,) =5 =70,

* The unit-step response of this case is as follows

R(S)— ﬂC(S)—( <) 1‘ c(t)=1-e“'(1+w,t) fort>0

s+a)) S

19
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Second-Order System

4. Over-damped case (¢ >1)

In this case the two poles are negative real and unequal.
Im(s)

C(s) o’

n

R(S) S*+2lw S+’ *—x > Re(s)

SZ 1

* The closed-loop transfer function can be written as

C(s) _ ; S = ‘(5 +\/m) “n
R(s) (S+§0)n +wn\/m) (s+§a)n —a)n\/ﬁ) s, :—(J—m)wn

* The unit-step response of this case is as follows
2

1 _ =
(E)= = 0 (S+§a)n+wn\/ﬁ) (S+§“’n‘w“‘/ﬁ)s

20
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Second-Order System

4. Over-damped case (¢ >1)

* The unit-step response of this case is as follows
2

_1 =
)= = O (s+§a)n+a)n\/m) (5+§wn—wnm)s

* Taking inverse Laplace transform yields

(g“ FJCOJ[ e(é’ﬂ/?)a)t
c(t)=1- fort>0

2\/ S B Vgt C+4/C7 -1

21
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Definitions of Transient-Response

1. Delay time, {

Specifications
In specifying the transient-response characteristics of a control
system to a unit-step input, it is common to specify the following:

clt) g
Allowable tolerance
. . i |
2. Rise time, t, | ) /\ VS S Jt 005
} —
. \""'-—--""I'E:T """""""""""" rf— 0.02
3. Peak time, t, 1 |
=l ey S |
4. Maximum overshoot, M
. . [:]. | | | | .
5. Settling time, t, it ’
--r—fp—h-
- g -
22
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Definitions of Transient-Response

Specifications
1. Delay time, t; :The delay time is the time required for the
response to reach half the final value the very first time.

":Ll:!] Y
Allowable tolerance

0.5 |--—-

23
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Definitions of Transient-Response
Specifications

2. Rise time, t.: The rise time is the time required for the response to
rise from 10% to 90%, 5% to 95%, or 0% to 100% of its final value.
For underdamped second order systems, the 0% to 100% rise time is

normally used. For overdamped systems, the 10% to 90% rise time is
commonly used. «(0) |

Allowable tolerance
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Definitions of Transient-Response
Specifications

3. Peak time, t;: The peak time is the time required for the response
to reach the first peak of the overshoot.

clt) A

Allowable tolerance

25
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Definitions of Transient-Response
Specifications

4. Maximum overshoot, Mp: The maximum overshoot is the
maximum peak value of the response curve measured from unity. If
the final steady-state value of the response differs from unity, then it
is common to use the maximum percent overshoot. It is defined by

clt) A

Allowable tolerance

VT Vi OV o L
: ) olf ;

26
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Definitions of Transient-Response

Specifications
5. Settling time, t.: The settling time is the time required for the
response curve to reach and stay within a range about the final value
of size specified by absolute percentage of the final value (usually 2%
or 5%). The settling time is related to the largest time constant of the
control system. o0 |

Allowable tolerance

27
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Second-Order Systems and Transient-
Response Specifications
Rise time t: By letting c(t,) =1 in an under-damped system ;,,

ﬂ"_ Jwq

—§ oy t, /l_ 2 w0, [T— 2 | @y
c(t)=1=1- ° sin| w,t. +tan™ o lﬁ /B
J1-¢7 ¢

. > —l--‘ (w, |=—
e n-r . 1_

——sin| @t +tan™ S =0 since e°“" 20 so
J1-¢2 ¢

sin(a)dtmttan1 “1242]:0 — tr=itan{ 1;5 J

Wy

t _m—C0s¢

_ 2
: where Wy =w,\J1-&
28 Wy
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Second-Order Systems and Transient-
Response Specifications

Peak time t,: Assume again the system is under-damped

- w,t _ 2
de =0 =) %:gwn ° sin| @, t+tan™ 1=
dti._, dt 1-¢?

¢ w,t 1— 2

— cos| m, t+tan™ S
1-¢2 ¢
dc O ot :
E :—ze Sont S”’](a)dt ):O ‘ Sln(a)dt ):O
t=t, 1-¢

15t peak

mm) ot =07 2737 —> tp=w—d

J
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Second-Order Systems and Transient-
Response Specifications

Maximum overshoot M,: Assume again the system is under-
damped

-S ot /_ 2
M, =c(t,)-1 ‘ M = sin(ywrtan1 155 J

p

1—(2
—¢ w,t ) 2 / 2 |
e ntp _ 1— 1-—
M =- sin/z cos| tan™ S +cossin| tan™ 5
1-¢72 ¢ ¢
° —J1-¢7 jor
S I
wn\":l - é-vz i ?,
2 Y Y B
M, =g <o =) M - e—(sldl—: )7 e
30 —"“‘ oy ==

Sh
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Second-Order Systems and Transient-
Response Specifications

Settling time t;: Assume again the system is under-damped

—§ oyt /1_ 2
c(t)=1- ° sin(a)dtthan1 (;éw ] for t>0

1-¢7

Consider the time constantis T =

cw,
4
t. =4T = (2% criterion)
cw,
3 L
t. =3T = (5% criterion)
cw,

31
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Second-Order Systems

Example: Consider a system with the following block diagram.
Calculate k and kg so that the maximum overshoot remains under
20% and the peak time happens before the first second for a unit-

step input.

32

2017 Shiraz University of Technology Dr. A. Rahideh



Second-Order Systems

Example:

? k, =7? tohave M <20% and t <1

K
0, _ s(s+1) _ K 0, w;
o 10 K aikg Sr@Ksk g TS asta
s(s+1) ;

> =k ‘a)nzx/E

S
I

200, 1+ Kk, mmmy &= NKs
., = =
n g 2\/E

33
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Second-Order Systems

Example: k=27 k =2 tohave M <20% and t <1

g

1+ kk
_ g
o=k =g
M <20% _;Mp:e‘(““l‘@”go.z m=)  (>0.456
T
t,<1 = (= -
@,\1-C
QC
>

m=) ©,2353 radls

34
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Second-Order Systems

Example:

o =k
®,>3.53 radls

? k, =7? tohave M <20% and t <1

Jk>353 mm)p k=125

; 1+ kkg
- 1+ Kk _
2.Jk fg20_456 N kg20.456x2\/E 1
> 0.456 2K :
0, k 0,
s(s+1) >
l+kgs

35
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Second-Order System

The unit-impulse response of the second-order system can be easily
obtained by the inverse Laplace transform of

36

2
@
C(s) = n 1.0
( ) S + 24’a)ns + a)nz 08 [ ’
For 0<¢ <1 0, =, \1-C o _
ot 02 ff -+ g{img'
e : - clt .
c(t)=2r sin(w,t) for t>0 | & °
/1_ 42 o2 o
For ¢ =1 M ) 3
ct)=wte™™" for t>0 -10 ) L !, ; lio 12
For ¢ >1
& - for t>0

c(t) =
2

;-1

(e(gm)a)nt

—((ﬂ/?—l)wnt j
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Second-Order Systems and Transient-
Response Specifications

The maximum overshoot for the unit-impulse response of the under-
damped system occurs at

tan~? 1-¢*

Coeax = 3 where 0<¢ <1
Wy, 1_4/2

The maximum overshoot is

c(t)max—a)nexp[— J tan™ 1_‘/;2} where 0< ¢ <1
1-¢7? &

37
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Second-Order Systems

The peak time (tp) and maximum overshoot (Mp) of a unit-step
response can be obtained from the unit-impulse response

c(r) A

Unit-impulse response

e

% B
—
l:' \/\ t
[

P

38

2017 Shiraz University of Technology Dr. A. Rahideh



39

Higher-Order Systems

The closed-loop transfer function of higher-order systems can be
expressed using the following general form:

+bs" ™ +---+b S+
C(s) bys"+bs™ b ,s+b_
R(s) as"+as" +---+a ,S+a

m < n)

Factorizing the numerator and denominator yields

C(s) _ K(s+2)(s+2,)(s+2,)
R(s)  (s+p)(s+p,)(s+p,)

(m < n)

The roots of the numerator are the zeros (Zj where J=1,2,...,m) of
the system and the roots of the denominator are the poles (p;
where 1=1,2,...,n) of the system.
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Higher-Order Systems

* Assuming all poles are real and distinct, for a unit-step input the
output is

C(s)——+z

i1 O+ p,

where @; is the residue of the pole at s = -p;

* If the system involves multiple poles, then C(s) will have multiple-

40

pole terms.
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Higher-Order Systems

* If all closed-loop poles lie in the left-half s plane, the relative
magnitudes of the residues determine the relative importance of
the components in the expanded form of C(s).

* If thereis a closed-loop zero close to a closed-loop pole, then the
residue at this pole is small and the coefficient of the transient-
response term corresponding to this pole becomes small.

* A pair of closely located poles and zeros will effectively cancel
each other.

If a pole is close to a zero, the effect of that pole is low.

41
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‘?h%[":g

Higher-Order Systems P

If a pole is located very far from the origin, the residue at this pole
may be small.

The transients corresponding to such a remote pole are small and
last a short time.

Terms in the expanded form of C(s) having very small residues
contribute little to the transient response, and these terms may
be neglected.

If this is done, the higher-order system may be approximated by a
lower-order one.
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Higher-Order Systems

* Consider the case where the poles of C(S) consist of distinct real
poles and pairs of complex-conjugate poles. Therefore we have

C(S)——+Z Z 3+§ka)k)+cka)k\/1 S

oS+ pJ 1 $°+24, 0,5+

(q+2r =n)
* The unit-step response c(t) is then
c(t) = a-i-iaje_pjt Jrzr:bkegk“’kt cos(a)k 1—§k2t)
j=1 k=1
+Zr:cke‘5k“’ktsin(a)k 1—/;k2t)
k=1

* If all poles have negative real part, the system is stable and
43 Cc(w)=a
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Dominant Closed-Loop Poles

If the ratios of the real parts of the poles exceed 5 and there are
no zeros nearby, the poles nearest the jw axis will dominate the
transient response behaviour.

Example: In the following system the dominant pole is 0.5,
because there is no zero nearby (near 0.5) and the ratio of
poles is 6 which exceeds 5. C(s)  7(s+5)

R(s) (s+3)(s+0.5)

Example: In the following system a zero is near the pole 0.5
therefore the dominant pole is not 0.5 but it is 3.

C(s)  s(s+0.48)

R(s) (s+3)(s+0.5)
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Stability Analysis in the Complex Plane %

If all closed-loop poles lie in the left-half s plane, the system is
stable.

C(s)  7(s+95)

R(s) (s+3)(s+0.5)

If any of the closed-loop poles lie in the right-half s plane, the
system is unstable.

C(s)  7(s+5)
R(s) (s+3)(s—0.5)
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Routh’s Stability Criterion

Routh’s stability criterion tells us whether or not there are
unstable roots in a polynomial equation without actually solving
for them. The procedure is as follows:

1. Consider the following close-loop system

C(s bSm+bSm_1—|—----I—b_S+b
— 0 1 m-1 m

R(s) as"+as" +---+a _,s+a
0 n-1 n

2. Write the characteristics equation

n n-1
a,s +as +---+a ,S+a =0

Where the coefficients are real quantities. We assume that a,, is
not zero; i.e. any zero root has been removed. 46

2017 Shiraz University of Technology Dr. A. Rahideh



Routh’s Stability Criterion

3. If any of the coefficients are zero or negative in the presence
of at least one positive coefficient, a root or roots exist that are
imaginary or that have positive real parts. Therefore, in such a
case, the system is not stable.

4. |If all coefficients are positive, arrange the coefficients of the
polynomial in rows and columns according to the following

pattern: ——— _ §" |a, a, a, a
The number of rows is n+1. 11
S al a3 a5 a?
Sn—2
a;s"+as" +---+a _,s+a =0 -3
S0

47
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Routh’s Stability Criterion

5. The coefficients to be calculated are listed in the table

a;s"+as" " +---+a ,s+a =0

b = 8,8, — 8,3 h. = 8, —8yd5
1 2
2 2

ba,—ab ba. —ab
c, = 2% a,0, C2:15b313
1

n

S d, a, 4, dg
n-1
S q d; a5 a
s"* ¢ ¢C, C C,
0
S g,
b, = aiaes_aoa?
=
a
b1a7_a1b4
C3:
b,

48
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Routh’s Stability Criterion

To simplify the calculation an entire
row may be divided or multiplied by a

positive number, e.g. k > 0. "
S dy 2 9 G

* Routh’s stability criterion states that s a3 A &

the number of roots with positive real s~ ||kb,| kb, kb, kb,

parts is equal to the number of s |le, | ¢, ¢ ¢

changes in sign of the coefficients of ; ; ;

the first column of the array. &0 g,
* The necessary and sufficient condition

that all roots lie in the left-half s plane

is that all terms in the first column of

the array have positive signs. 49
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Routh’s Stability Criterion

Example: Apply Routh’s stability criterion to the following

polynomial:

s*+25°+3s° +45+5=0

1. Form the table and simplify
(second row is divided by 2)

s*|1 3 5 & 5
12 4 0 s
s* s*
s' s'
s’ s’

a;s"+as" " +---+a ,s+a =0

S a, a, a, a,
n-1

S a a, a a,
Sn—2

Sn—3

S0

50
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Routh’s Stability Criterion

Solution:
2. Calculate the remaining
coefficients s" |a, a, a, a;
g a, a. a
s 1 35  1x3-1x2 L . R
S b, = 1 =1 sn_3 b b, b, Db
S c, C, C, C
s° 5 5-x0 o |- | o L
st | -3 21 ;
0 5 S gl
S 1x2-1x5
5= =3 _ 98, —dya, _ ba, —ab,
1 b, = C, =
a o,
—3x5-1x0
d, = =5 a,a, —a,a; c,b, —bc,
-3 b, = d, =
51 a1 Cl
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Routh’s Stability Criterion

Solution:

* The first column numbers have changed their signs twice;
therefore there are two roots with positive real parts.

 The system is therefore unstable.

o1 (N W
o Ol

1@3

S 1
S 1
sz@
S

46}

52
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Routh’s Stability Criterion

Special Case 1: If a first-column term in any row is zero, but the
remaining terms are not zero or there is no remaining term, then
the zero term is replaced by a very small positive number ¢and
the rest of the array is evaluated.

S 1
2

Example: $?+25°+5+2=0 mmm) s 2 2
' |0~¢
| 2

If the sign of the coefficient above the zero (¢g) is the same as that
below it, it indicates that there are a pair of imaginary roots.
Actually, This example has two roots at S=%] .

53
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Routh’s Stability Criterion

If, however, the sign of the coefficient above the zero (¢) is
opposite that below it, it indicates that there is one sign change.

Example: §°—3s+2=(s—1)(s+2)=0

s> 1 -3
‘ s° | O=¢ 2

st | —3-2

s’ 2

There are two sign changes of the coefficients in the first column.
So there are two roots in the right-half s plane. This agrees with

the correct result indicated by the factored form of the polynomial
equation. 54
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Routh’s Stability Criterion

Special Case 2: If all the coefficients in any derived row are zero, it
indicates that there are roots of equal magnitude lying radially
opposite in the s plane (that is, two real roots with equal
magnitudes and opposite signs and/or two conjugate imaginary
roots).

In such a case, the evaluation of the rest of the array can be
continued by forming an auxiliary polynomial with the
coefficients of the last row and by using the coefficients of the
derivative of this polynomial in the next row.

Such roots with equal magnitudes and lying radially opposite in
the s plane can be found by solving the auxiliary polynomial,
which is always even.

For a 2n-degree auxiliary polynomial, there are n pairs of equal
and opposite roots. 55
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Routh’s Stability Criterion
Example:  §°42¢% +245% + 48s? —255-50=0

s° |1 24 —25
‘ s* |2 48 -50 Auxiliary polynomial P(S)
10 O

* The terms in the s3 row are all zero. (Such a case occurs only in
an odd-numbered row.)

* The auxiliary polynomial is formed from the coefficient of the s
row:  p(s)=2s*+48s*-50

* which indicates that there are two pairs of roots of equal
magnitude and opposite sign (that is, two real roots with the

same magnitude but opposite signs or two complex conjugate

roots on the imaginary axis). 56
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Routh’s Stability Criterion

Solution:  ¢°4 2¢* 4 245 + 48s* — 255 —50 =0

dP(s)
ds

—8s° + 965

* The derivative of P(S) with respect to Sis

* The terms in the s3 row are replaced by the coefficients of the
last equation, i.e. 8 and 96.

s> | 1 24 —-25

st | 2 48 —-50

s° 8 96 Coefficients of dP(s) / dt
s* | 24 -50

s | 113 0

s’ | =50

o7
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Routh’s Stability Criterion
Solution:  °4 25* 1 2453 + 485? —255-50=0

* We see that there is one change in sign in the first column of
the new array.

* Thus, the original equation has one root with a positive real
part.

S° 1 24 —-25
st | 2 48 -50
s°| 8 96

s | 24 -50

st 1113 0

s® | =50
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Application of Routh’s Stability Criterion
to Control-System Analysis

Example: Consider the following system. Determine the range of K

for stability. C(s)

 The characteristics equations is

K
R(s) s*+3s°+3s2+2s+K

* The array of coefficients becomes

s*+3s°+3s°+25s+K =0

S 1 3 K  The numbers on the first column should all be positive:
3
s 3 20 2-2K >0
2 7
S £ K
i : < L>K>0
S —
. ! K>0
S K
59
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Some Definitions
1. Steady-State Response
Co (t) = c(e0) = limc(t)

2. Steady-State Error

e M=lime(t) o e,(t)=limsE(s)

60
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Some Definitions

3. System Type: Consider the unity-feedback control system with
the following open-loop transfer function G(S):

K(s+2z)(s+z,)-(s+z,)

o) sV (s+p, s+ p,)-+(s+py)

 Asystemis called type O, type 1, type 2, ..., if N=0, N=1, N=2,
..., respectively.

* In non-unity feedback control system, the system type is
obtained from the open-loop transfer function G(s)H(S). 61
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Different Types of Controllers

Proportional controller (P)

Proportional-Integral controller (Pl)

Proportional-Derivative controller (PD)

Proportional-Integral-Derivative controller (PID)

62
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Different Types of Controllers

1. Proportional controller (P)

u(t) = K e(t) —> U(s) = K E(s)

63
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Different Types of Controllers

2. Proportional-Integral controller (PI)

u(t):er(t)+ Kij;e(r)dr ‘ U(S)=(Kp+%jE(s)
Or

u(t):Kp[e(t)+%j;e(r)drj =) U(s):Kp£1+T—1JE(S)

2017 Shiraz University of Technology Dr. A. Rahideh



Different Types of Controllers

3. Proportional-Derivative controller (PD)

u(t) = K e(t) + K, d‘;(tt) —> U(s)=(K, +Kq s)E(s)

Or
u(t) =K (e(t)+T dZit)j — U(s) = Kp(1+TO| s)E(s)
=
Ke =K, Ty
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Different Types of Controllers

4. Proportional-Integral-Derivative controller (PID)

u(t) = K,e(t)+ K, [ e()dr+K, de(t)

mm) U(s)= ( +%+Kd5jE(s)

Or

ut) =K (e(t)+ J-e(r)dr+T e(t))q U(s)=K [1+TL+T sjE(s)
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Different Types of Controllers

Integral control action:

* In the proportional control of a plant whose transfer function
does not possess an integrator 1/s, there is a steady-state error,
or offset, in the response to a step input. Such an offset can be
eliminated if the integral control action is included in the
controller.

* Note that integral control action, while removing steady-state
error, may lead to oscillatory response of slowly decreasing
amplitude or even increasing amplitude, both of which are
usually undesirable.

67
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Different Types of Controllers

Derivative control action:

Derivative control action, when added to a proportional controller,
provides a means of obtaining a controller with high sensitivity.
An advantage of using derivative control action is that it responds
to the rate of change of the actuating error and can produce a
significant correction before the magnitude of the actuating error
becomes too large.

Derivative control thus anticipates the actuating error, initiates an
early corrective action, and tends to increase the stability of the

68
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Steady-State Errors in Unity-Feedback $52
Control Systems

) ) - - G(s) _ R(s)
E(s)=R(s)-C(s) mmm) E(s)=R(s) R(S)1+G(s) m=) EC) 1+G(s)
. R(s)
e, =lim s
20 1+ G(S)

1
Unit step input:  R(s) =3

: 1 1 1 1
e.=lim s — q e. = ‘ e, =
P00 14G(s) s ® 1+ G(0) 1+k,

where kIO is the static position error constant

: R(s) E(s) C(s)
k, =liMG(s) = G(0) _-?_ 56 I .
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Steady-State Errors in Unity-Feedback &<
Control Systems

e, =lim s R(S)
s>0  1+G(S)

1
Unit ramp input: R(S) =3

: 1 1 . 1
e.=lim s ‘ e =lim ‘ e, =—
¥ os0  14G(s) s ® 50 5G(S) k

where K, is the static velocity error constant

. R E C(s)
K, = IIng sG(s) 2 o G(s) I >
70
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Steady-State Errors in Unity-Feedback &<
Control Systems

e, =lim s R(S)
s>0  1+G(S)

Y [ ] [ ] 1

Unit parabolic input: R(s) =3

e =lim s L mmd e -lim— L mm)  e,-
* 750 "1+G(s) §° 0 5%G(s) ok

where K, is the static acceleration error constant

_ R(s) E(s) C(s)
k, = |IrT01 $°G(s) —-(%)— G(s) I >
71
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Steady-State Errors in Unity-Feedback

Control Systems
Effects of the System type on the steady-state error:

input Unit Parabolic
System type
o0 o0

1

1+kp
1
0 k_v 0
0 0 i
ka
0 0 0
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Steady-State Errors in Unity-Feedback $52

Control Systems

Example: In the following system, calculate the gain K to have steady-
state error not more than 5% in response to a unit step input.

R E u 0.05 C
R(s) = 1 e, <0.05 — K b— I =
S s+1
G(s) = 0.05 K
1+5s
kp = LiLEIG(S) =0.05K "
1

> # e. = <0.05 # >
1 ® 140.05 K K =380

e =
T 14k, /
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