

Compassionate, The Most Merciful



# **Brushless PM Machines**

Design, Optimization and Analysis



### **Table of Contents**



1. Introduction

2. Magnetic Equivalent Circuit based Modelling

3. Winding Topology

4. Two-Dimensional Analytical Modelling

5. Metaheuristic Optimization

#### 6. Numerical Modelling

7. Linear PM Synchronous Machines

Dr. A. Rahideh

# **Numerical Techniques**



The most widely used techniques to numerically solve partial differential equations (PDEs) are:

• Finite element method (FEM)

• Finite difference method (FDM)

• Finite volume method (FVM)



# Software



Famous software packages for electromagnetic problems:

- **ANSYS**<sup>®</sup> (Electromagnetic)
- Ansoft Maxwell<sup>®</sup> (ANSYS Maxwell from 2008)



COMSOL Multiphysics<sup>®</sup>



- FLUX<sup>®</sup> 2D
- FLUX<sup>®</sup> 3D



IOMSC



- Ansoft Maxwell (which is now known as ANSYS Maxwell) is a program that can be used to visualize magnetic fields and predict magnetic forces, torques, inductances, back-emf and other crucial electromagnetic quantities.
- Electromagnetic problems are difficult to be accurately solved because the materials used are nonlinear and the fields cannot be confined like electrons within wires.
- This program makes the design and analysis of electromagnetic devices much **easier**.



Following steps describe the solution of an electromagnetic problem using Ansoft Maxwell:

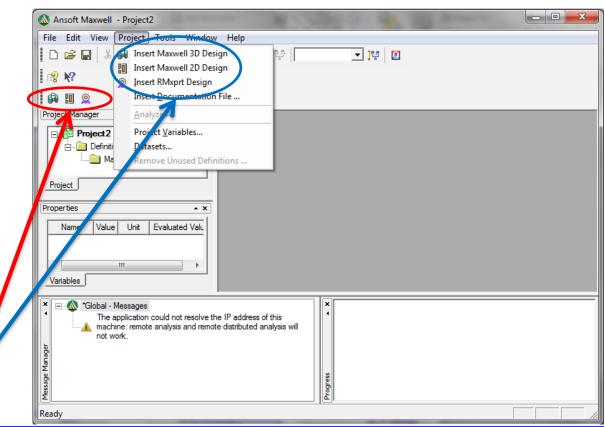
- 1. Set up a **project** (define the file name and type of problem)
- 2. Define the **model** (draw the geometry of the problem or import the file from drawing package such as AutoCAD)
- 3. Assign the material properties or select the material from the library (specify what each part of the system is made of)
- 4. Impose **boundaries**
- 5. Apply **excitation sources** (currents flowing in any part)
- 6. Define **executive parameters** (e.g. for force or torque calculations)
- 7. Select the solution options (to compromise between accuracy and computational speed)
- 8. Solve the problem (automatic mesh and refining the mesh)
- 9. Postprocessing

- The best way to learn a software is through examples.
- The first example is to analyze the 2D magnetic flux distribution of a slotless brushless PM machine with the following characteristics:

Exterior Stator Winding Airspace Retaining sleeve Magnet Rotor (a) Shaft

| Variables                 |                      | parameters |
|---------------------------|----------------------|------------|
| р                         | number of pole-pairs | 5          |
| $lpha_{_p}$               | Pole arc /pole pitch | 0.70       |
| $\mu_r^m$                 |                      | 1.05       |
| $\mu_r^s = \mu_r^r$       |                      | 600        |
| $\mu_r^{sl} = \mu_r^{sh}$ |                      | 1          |
| <b>B</b> <sub>rem</sub>   | (T)                  | 1.00       |
| $I_m$                     | (A)                  | 10         |
| $R_{sh}$                  | (mm)                 | 20.0       |
| $R_r$                     | (mm)                 | 46.5       |
| $R_{ m m}$                | (mm)                 | 59.5       |
| $R_{sl}$                  | (mm)                 | 60.0       |
| $R_a$                     | (mm)                 | 60.5       |
| $R_{s}$                   | (mm)                 | 64.0       |
| $R_o$                     | (mm)                 | 70.0       |
| L                         | (mm)                 | 75.6       |
| ω                         | (rad/s)              | 157        |
| $N_{c}$                   | Turns per coil       | 15         |






Step 1: Set up a project

There are three options to start the modeling:

- 1- Maxwell 2D Design
- 2- Maxwell 3D Design
- 3- RMxprt Design

Which can be selected from **shortcut buttons** or **Project** menu



Dr. A. Rahideh



Step 1: Set up a project

The applications of these three options are:

1- Maxwell 2D Design: for two-dimensional analysis from scratch.
 Project > Insert Maxwell 2D Design

2- Maxwell 3D Design: for three-dimensional analysis from scratch. *Project > Insert Maxwell 3D Design* 

- 3- **RMxprt Design**: for some available electromagnetic devices.
  - 2
- Project > Insert RMxprt Design

We will select Maxwell 2D Design by clicking on 🔢



#### Step 1: Set up a project

Some of the electromagnetic devices via **RMxprt Design** 

- Three Phase Induction Motor
- Single Phase Induction Motor
- Three Phase Synchronous Machine
- Brushless Permanent-Magnet DC Motor
- Adjust-Speed Synchronous Machine
- Permanent-Magnet DC Motor
- Switched Reluctance Motor
- Line-Start PM Synchronous Motor
- Universal Motor
- DC Machine
- Claw-Pole Synchronous Machine
- Three Phase Non-Salient Synchronous Machine
- Generic Rotating Machines



Step 1: Set up a project

The software has several panels:

- Project manager
- Properties
- Message manager
- Progress
- Modeler window

|                                                 | Mansoft Maxwell - Project2 - Maxwell2DDesign1 - 3D Ma<br>File Edit View Project Draw Modeler Maxwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Project Properties                      | Image: Second | Image: Second secon |
| Variables  Variables  Variables  0 0 0.5 1 (mm) | Project Properties   Value Unit Evaluated Value Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Step 1: Set up a project

- Project manager contains a design tree to list the structure of the project
- **Properties** for changing model parameters and attributes
- Message manager to view any error or warning occurs
- **Progress** to view the solution progress
- Modeler window contains the model and model tree



#### Step 1: Set up a project

- In the project manager, right-click on the **Maxwell2DDesign** and select **Rename** to change the name.
- In the project manager, right-click on the Maxwell2DDesign and select Solution Type to change the Geometry Mode (Cartesian or cylindrical) and also to select

#### Magnetic:

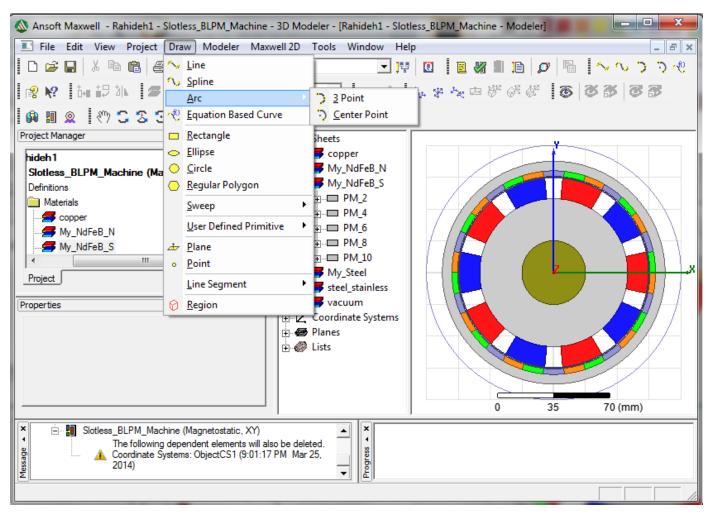
| iviagnetic.   | Geometry Mode: Cartesian, XY 💌 |
|---------------|--------------------------------|
| Magnetostatic | 1                              |
|               | Magnetic:                      |
| Eddy Current  | Magnetostatic                  |
| Transiant     | C Eddy Current                 |
| Transient     | C Transient                    |
|               | Electric:                      |
| Electric:     | C Electrostatic                |
| <b>-1</b>     | C AC Conduction                |
| Electrostatic | C DC Conduction                |
| AC Conduction |                                |
|               | OK Cancel                      |
| DC Conduction |                                |
|               |                                |

13

Solution Type: Rahideh1 - Slotless\_BLPM\_Machine



Step 2: Define the model

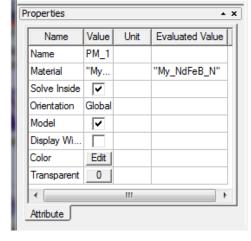

- The model can be imported from other packages via: *Modeler > Import...* Or
- Using the drawing facilities of the ANSYS Maxwell such as Line, Spline, Arc, Rectangle, Ellipse, Circle, Polygon

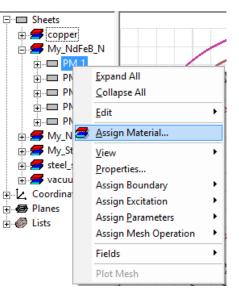
Draw > Line(e.g.) $\sim \sim \rightarrow \rightarrow \sim$  $\sim \sim \rightarrow \sim$ Boolean operatorsModeler > Boolean > Unite(e.g.) $\Box \Box \Box$ Duplicate and Arrange

Edit > Duplicate > Around Axis (e.g.)

00 07 41







Dr. A. Rahideh

**Step 3**: Assign the **material properties** 

• Click on each part and from the **Properties** window either select the material from the library or define a new material.

• It can be done by right-click on the part name and select Assign Material ...









Step 4: Impose boundaries

• The boundaries can be imposed via:

Maxwell 2D > Boundaries > Assign > Balloon (e.g.)

- Or right-click on the empty space of the Modeler window and *Assign Boundary > Balloon* (e.g.)
- The options for boundaries are:
  - Vector Potential: to set the magnetic vector potential, A<sub>z</sub>, to a constant value on a boundary.
  - **Symmetry**: to model a fraction of a system which is repeated.

Balloon: to model the region outside the drawing space as being nearly "infinitely" large — effectively isolating the model from other sources of current or magnetic fields.
 Master: to model planes of periodicity (with slave) to model planes of periodicity (with master)



Step 4: Impose boundaries

- In this example, the **balloon boundary** needs to be imposed on the outer edge of the exterior region.
- To do so first select the edge by Right-click on the modeler window and click on Select Edges
- Then select the outer edge of the exterior region and right-click and select Assign Boundary > Balloon
- And give a name (e.g. balloon1) to the balloon boundary.



Step 5: Apply excitation sources

- It is possible to apply excitation source as:
  - Current
  - **Current Density**
- The excitation can be applied via:

Maxwell 2D > Excitations > Assign > Current (e.g.)

 Or right-click on the empty space of the Modeler window and *Assign Excitation* > *Current* (e.g.)



Step 6: Define executive parameters

- To calculate quantities such torque, force and inductances, it needs to define executive parameters.
- The parameters can be defined via:
   Maxwell 2D > Parameters > Assign > Torque (e.g.)
- Or right-click on the empty space of the Modeler window and *Assign Parameter > Torque* (e.g.)
- For force and toque calculation the rotor should be selected.
- For inductance calculation, the side-coils should be defined.



Define local variables

- It is also possible to define **local variables** such as the currents of the armature windings at a single moment or as a function of time.
- To do so, use the following route
   Maxwell 2D > Design Properties

and provide the name and value of each variable.



Step 7: Select the solution options

- It is possible to compromise between the accuracy and complexity via solution options.
- To set up a solution use the route below:

Maxwell 2D > Analysis Set up > Add Solution Set up and define the required solution

- The quality of mesh has a significant effect on both accuracy and complexity.
- It is possible to refine the initial mesh proposed by the software.



Step 7: Refine mesh

- Mesh refinement can be done:
  - On Selection
    - Length Based
    - Skin Depth Based
  - Inside Selection
    - Length Based
- To refine mesh, the following steps should be performed:
  - Set up the restriction on the desired mesh
  - Reassign the defined restriction on the geometry
  - Apply mesh operation
  - Plot the mesh



Step 7: How to Refine mesh

- To refine mesh, the following steps should be performed:
  - Set up the restriction on the desired mesh; select the area of interest and, e.g.,

Maxwell 2D > Mesh Operations > Assign > Inside Selection > Length Based

- Reassign the defined restriction on the geometry

Maxwell 2D > Mesh Operations > Reassign

Apply mesh operation

Maxwell 2D > Analysis Set up > Apply Mesh Operations

Plot the mesh

Maxwell 2D > Fields > Plot Mesh

The above operations can be done by right-click on Modeler window.

Step 8: Solve the problem

- Before solution, the problem can be checked via: *Maxwell 2D > Validation Check* or by clicking on the shortcut button
- To analyze (solve) the problem
   Maxwell 2D > Analyze All or by clicking on the shortcut button





#### Step 9: Postprocessing

- By using the following route, the field results can be observed:
   Maxwell 2D > Fields > Fields > A > Flux Lines (e.g.)
- The field quantities to be observed consist of
  - Vector magnetic potential (Flux lines or its vector)
  - Magnetic field intensity (Magnitude or its vector)
  - Magnetic flux density (Magnitude or its vector)
  - Current density (Magnitude or its vector)
  - Energy, Co-energy and Apparent Energy
  - Ohmic losses
  - Force density on an edge or on a surface
  - Temperature



#### Step 9: Postprocessing

• By using the following route, the calculated executive parameters are shown:

Maxwell 2D > Results > Solution Data

- The executive parameters consist of
  - Force (x- and y-direction and its magnitude)
  - Torque
  - Inductance matrix



#### Step 9: Postprocessing

- Plot 1D graphs, e.g. radial component of flux density vs. spatial angle.
- First a path should be defined as desired, e.g. in the middle of airgap. To do so, use "center point arc" and give it a proper name (airgap\_path).
- Right-click on the airgap\_path and select Fields > B > Mag\_B.
- Click on the Field Calculator and define Br.
- In the project Manager right-click on Results and select Create Fields Report > Rectangular Plot.
- Set the Geometry to airgap\_path select x and y to the defined parameters.



#### Step 9: Postprocessing

#### How to plot the x- and y-components of flux density:

- From Maxwell2D→Fields→Calculator
- Select "B-vector" from "Named expressions" list
- Click on "Copy to stack"
- Find the x-component of B-vector from "vector" list → Scal? → ScalarX
- Click on "Add" and give it a name, e.g. Bx
- Repeat it for y-component of B-vector
- It is possible to have X from "Input" list → Function and select X and click on "Add" and give it a name, e.g. Xp
- Repeat for Y.