

Linear Control Systems

Table of Contents

1. Introduction to Control Systems
2. Mathematical Modelling of Dynamic Systems
3. Steady State and Transient Response Analysis
4. Root Locus Analysis
5. Frequency Response Analysis

Chapter 5
 Frequency Response Analysis

5.1. Introduction

5.2. Bode Diagrams

5.3. Polar Plots (Nyquist)
5.4. Log-Magnitude vs. Phase Plots (Nichols Plots)
5.5. Nyquist Stability Criterion
5.6. Stability Analysis

Introduction

- By the term frequency response, we mean the steady-state response of a system to a sinusoidal input.
- In frequency-response methods, we vary the frequency of the input signal over a certain range and study the resulting response.
- Assume the following system, if the input is sinusoidal

$$
x(t)=A \sin (\omega t)
$$

The steady state output is

$$
y_{s s}(t)=A|G(j \omega)| \sin (\omega t+\angle G(j \omega))
$$

where $G(j \omega)$ is called the sinusoidal transfer function.

Introduction

- Example 1: Find the steady-state output of the following system in response to $x(t)=A \sin (\omega t)$

$$
X(s)
$$

$$
\begin{aligned}
& G(s)=\frac{K}{T s+1} \\
& G(j \omega)=\frac{K}{j T \omega+1}\left\{\begin{array}{l}
|G(j \omega)|=\frac{K}{\sqrt{1+T^{2} \omega^{2}}} \\
\angle G(j \omega)=-\tan ^{-1} T \omega
\end{array}\right.
\end{aligned}
$$

$$
y_{s s}(t)=A|G(j \omega)| \sin (\omega t+\angle G(j \omega))
$$

$$
y_{s s}(t)=\frac{A K}{\sqrt{1+T^{2} \omega^{2}}} \sin \left(\omega t-\tan ^{-1} T \omega\right)
$$

Presenting Frequency-Response Characteristics in Graphical Forms

- The sinusoidal transfer function, a complex function of the frequency ω, is characterized by its magnitude and phase angle, with frequency as the parameter.
- There are three commonly used representations of sinusoidal transfer functions:

1. Bode diagram or logarithmic plot

$$
\begin{aligned}
& |G(j \omega)| v s . \omega \\
& \angle G(j \omega) v s . \omega
\end{aligned}
$$

2. Nyquist plot or polar plot

$$
\operatorname{Im}[G(j \omega)] v s . \operatorname{Re}[G(j \omega)]
$$

3. Log-magnitude-versus-phase plot (Nichols plots)

$$
|G(j \omega)| v s . \angle G(j \omega)
$$

Bode Diagrams

A Bode diagram consists of two graphs:

1. One is a plot of the logarithm of the magnitude of a sinusoidal transfer function;
2. The other is a plot of the phase angle; Both are plotted against the frequency on a logarithmic scale.

The standard representation of the logarithmic magnitude of $G(j \omega)$ is $20 \log |G(j \omega)|$, where the base of the logarithm is 10. The unit used in this representation of the magnitude is the decibel (dB).

Basic Factors

The basic factors that very frequently occur in an arbitrary transfer function $G(j \omega) H(j \omega)$ are

1. Gain K

2. Integral and derivative factors $(j \omega)^{ \pm 1}$
3. First-order factors $(1+j \omega)^{ \pm 1}$
4. Quadratic factors $\left[1+2 \zeta\left(j \omega / \omega_{n}\right)+\left(j \omega / \omega_{n}\right)^{2}\right]^{ \pm 1}$

Note that adding the logarithms of the gains corresponds to multiplying them together.

Basic Factors

1. Gain K

$$
|G(j \omega)|=|K|| ||G(j \omega)|_{d B}=20 \log |K|
$$

$$
G(s)=K \quad G \quad G(j \omega)=K
$$

$$
\angle G(j \omega)= \begin{cases}0 & K \geq 0 \\ -180^{\circ} & K<0\end{cases}
$$

Basic Factors

2. Integral $(j \omega)^{-1}$

$$
G(s)=\frac{1}{s} \Rightarrow G(j \omega)=\frac{1}{j \omega}
$$

$$
|G(j \omega)|=\frac{1}{\omega}
$$

$$
|G(j \omega)|_{d B}=-20 \log \omega \mid
$$

$$
\angle G(j \omega)=-90^{\circ}
$$

Basic Factors

3. Derivative $(j \omega)$

$$
|G(j \omega)|=\omega
$$

$$
|G(j \omega)|_{d B}=20 \log \omega
$$

$$
G(s)=s \quad \Longrightarrow G(j \omega)=j \omega
$$

$$
\angle G(j \omega)=+90^{\circ}
$$

Basic Factors

4. First-order $(1+j \omega T)^{-1}$

$$
G(s)=\frac{1}{1+T s} \quad \neg G(j \omega)=\frac{1}{1+j T \omega}
$$

$$
\begin{equation*}
|G(j \omega)|=\frac{1}{\sqrt{1+T^{2} \omega^{2}}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\angle G(j \omega)=-\tan ^{-1}(T \omega) \tag{2}
\end{equation*}
$$

(1) $\Rightarrow|G(j \omega)|=\left\{\begin{array}{ll}\frac{1}{T \omega} & \omega \gg \frac{1}{T} \\ 1 & \omega \ll \frac{1}{T}\end{array} \Rightarrow|G(j \omega)|_{d B}= \begin{cases}-20 \log T \omega & \omega \gg \frac{1}{T} \\ 0 & \omega \ll \frac{1}{T}\end{cases}\right.$

$$
|G(j \omega)|_{\omega=\frac{1}{T}}=\frac{1}{\sqrt{2}}
$$

$$
|G(j \omega)|_{d B \quad \omega=\frac{1}{T}}=-20 \log \sqrt{2}=-3 d B
$$

Basic Factors

4. First-order $(1+j \omega T)^{-1}$

$$
G(s)=\frac{1}{1+T s}
$$

$$
|G(j \omega)|= \begin{cases}\frac{1}{T \omega} & \omega \gg \frac{1}{T} \\ 1 & \omega \ll \frac{1}{T}\end{cases}
$$

$$
|G(j \omega)|_{d B}= \begin{cases}-20 \log T \omega & \omega \gg \frac{1}{T} \\ 0 & \omega \ll \frac{1}{T}\end{cases}
$$

Basic Factors

5. First-order $(1+j \omega T)$

$$
G(s)=1+T s \Rightarrow G(j \omega)=1+j T \omega
$$

$$
\begin{equation*}
|G(j \omega)|=\sqrt{1+T^{2} \omega^{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\angle G(j \omega)=\tan ^{-1}(T \omega) \tag{2}
\end{equation*}
$$

Basic Factors

5. First-order $(1+j \omega T)$

$$
G(s)=1+T s
$$

$$
|G(j \omega)|= \begin{cases}T \omega & \omega \gg \frac{1}{T} \\ 1 & \omega \ll \frac{1}{T}\end{cases}
$$

$$
\angle G(j \omega)=\tan ^{-1}(T \omega)
$$

$$
|G(j \omega)|_{d B}= \begin{cases}20 \log T \omega & \omega \gg \frac{1}{T} \\ 0 & \omega \ll \frac{1}{T}\end{cases}
$$

Basic Factors

6. First-order $(-1+j \omega T)$

$G(s)=-1+T s \quad G(j \omega)=-1+j T \omega$

$$
\begin{equation*}
|G(j \omega)|=\sqrt{1+T^{2} \omega^{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\angle G(j \omega)=\tan ^{-1}\left(\frac{T \omega}{-1}\right) \tag{2}
\end{equation*}
$$

$\left.\begin{array}{rl}(1) \Rightarrow & \Rightarrow|G(j \omega)|= \begin{cases}T \omega & \omega \gg \frac{1}{T} \\ 1 & \omega \ll \frac{1}{T}\end{cases} \\ |G(j \omega)|_{\omega=\frac{1}{T}}=\sqrt{2} & |G(j \omega)|_{d B} \omega=\frac{1}{T}\end{array}\right)=20 \log \sqrt{2}=3 d B$

Basic Factors

6. First-order $(-1+j \omega T)$

$$
G(s)=-1+T s
$$

$$
|G(j \omega)|= \begin{cases}T \omega & \omega \gg \frac{1}{T} \\ 1 & \omega \ll \frac{1}{T}\end{cases}
$$

$$
\angle G(j \omega)=\tan ^{-1}\left(\frac{T \omega}{-1}\right)
$$

$$
|G(j \omega)|_{d B}= \begin{cases}20 \log T \omega & \omega \gg \frac{1}{T} \\ 0 & \omega \ll \frac{1}{T}\end{cases}
$$

Basic Factors

7. Second-order

$$
\begin{array}{ll}
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} & G(s)=\frac{1}{\frac{s^{2}}{\omega_{n}^{2}}+\frac{2 \zeta}{\omega_{n}} s+1} \\
G(j \omega)=\frac{1}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)+j 2 \zeta \frac{\omega}{\omega_{n}}} & \square\left\{\begin{array}{l}
|G(j \omega)|=\frac{1}{\sqrt{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+\left(2 \zeta \frac{\omega}{\omega_{n}}\right)^{2}}} \\
\angle G(j \omega)=-\tan ^{-1}\left(\frac{2 \zeta \frac{\omega}{\omega_{n}}}{1-\frac{\omega^{2}}{\omega_{n}^{2}}}\right)
\end{array}\right. \\
\end{array}
$$

Basic Factors

7. Second-order

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$$
\begin{aligned}
& |G(j \omega)|=\frac{1}{\sqrt{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+\left(2 \zeta \frac{\omega}{\omega_{n}}\right)^{2}}} \\
& \angle G(j \omega)=-\tan ^{-1}\left(\frac{2 \zeta \frac{\omega}{\omega_{n}}}{1-\frac{\omega^{2}}{\omega_{n}^{2}}}\right)
\end{aligned}
$$

$$
|G(j \omega)|= \begin{cases}\left(\frac{\omega}{\omega_{n}}\right)^{-2} & \omega \gg \omega_{n} \\ 1 & \omega \ll \omega_{n}\end{cases}
$$

$$
|G(j \omega)|_{d B}= \begin{cases}-40 \log \frac{\omega}{\omega_{n}} & \omega \gg \omega_{n} \\ 0 & \omega \ll \omega_{n}\end{cases}
$$

Basic Factors

7. Second-order

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$$
\angle G(j \omega)=-\tan ^{-1}\left(\frac{2 \zeta \frac{\omega}{\omega_{n}}}{1-\frac{\omega^{2}}{\omega_{n}^{2}}}\right)
$$

$$
|G(j \omega)|_{d B}= \begin{cases}-40 \log \frac{\omega}{\omega_{n}} & \omega \gg \omega_{n} \\ 0 & \omega \ll \omega_{n}\end{cases}
$$

Basic Factors

7. Second-order

The Resonant Frequency ω_{r} and the Resonant Peak Value \boldsymbol{M}_{r}

 The peak value of $|G(j \omega)|$ occurs when the denominator, $g(\omega)$, minimizes$$
g(\omega)=\sqrt{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+\left(2 \zeta \frac{\omega}{\omega_{n}}\right)^{2}}
$$

$$
\frac{d g(\omega)}{d \omega}=0 \quad \square \quad \omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}} \quad 0 \leq \zeta<\frac{1}{\sqrt{2}}
$$

$$
M_{r}=|G(j \omega)|_{\max }=\left|G\left(j \omega_{r}\right)\right|=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}} \quad 0 \leq \zeta<\frac{1}{\sqrt{2}}
$$

Basic Factors

Corner frequency

- In the first-order system of the following form,

$$
G(s)=\frac{K}{T s+1}
$$

the corner frequency is $\quad \omega_{c}=\frac{1}{T}$

- In the second-order system of the following form

$$
G(s)=\frac{K}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

the corner frequency is $\quad \omega_{c}=\omega_{n}$

Basic Factors

Corner frequency

- Example 1:

$$
G(s)=\frac{4}{3 s+2} \quad \square \quad G(s)=\frac{2}{\frac{3}{2} s+1}
$$

the corner frequency is $\omega_{c}=\frac{1}{T}=\frac{2}{3}$

- Example 2:

$$
G(s)=\frac{6}{2 s^{2}+2 s+4} \quad G(s)=\frac{3}{s^{2}+s+2}
$$

the corner frequency is $\omega_{c}=\omega_{n}=\sqrt{2}$

Bode Diagrams

Example: Plot the bode diagrams of the following system

$$
G(s)=\frac{1000}{s(s+5)(s+50)}
$$

$$
G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}
$$

The corner frequencies are

$$
\omega_{c 1}=\frac{1}{T_{1}}=5 \quad \text { and } \quad \omega_{c 2}=\frac{1}{T_{2}}=50
$$

$$
\begin{aligned}
& |G(j \omega)|_{d B}=20 \log 4+20 \log \left|\frac{1}{j \omega}\right|+20 \log \left|\frac{1}{j \frac{\omega}{5}+1}\right|+20 \log \left|\frac{1}{j \frac{1}{50}+1}\right| \\
& \angle G(j \omega)=0+\angle \frac{1}{j \omega}+\angle \frac{1}{j \frac{\omega}{5}+1}+\angle \frac{1}{j \frac{\omega}{50}+1}
\end{aligned}
$$

Bode Diagrams (Magnitude)

Example: Plot the bode diagrams of the following system
The corner frequencies are
$\omega_{c 1}=\frac{1}{T_{1}}=5 \quad$ and $\quad \omega_{c 2}=\frac{1}{T_{2}}=50$
$|G(j \omega)|_{d B}=20 \log 4+20 \log \left|\frac{1}{j \omega}\right|+20 \log \left|\frac{1}{j \frac{1}{5}+1}\right|+20 \log \left|\frac{1}{j \frac{1}{j o+1}}\right|$
$G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}$

Bode Diagrams (Phase)

Example: Plot the bode diagrams of the following system
The corner frequencies are
$\omega_{c 1}=\frac{1}{T_{1}}=5 \quad$ and $\quad \omega_{c 2}=\frac{1}{T_{2}}=50$
$\angle G(j \omega)=0+\angle \frac{1}{j \omega}+\angle \frac{1}{j \frac{\omega}{5}+1}+\angle \frac{1}{j \frac{\omega}{50}+1}$
$G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}$

26

Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following system

$$
G(s)=\frac{1000}{s(s+5)(s+50)}
$$

$$
G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}
$$

$w=l o g s p a c e(-1,3,100)$;
numT=1000;
denT=[1 55250 0];
num1=4;
den1=1;
num2=1;
den2=[10];
num3=1;
den3=[1/5 1];

Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following system

$$
G(s)=\frac{1000}{s(s+5)(s+50)}
$$

$$
\nabla G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}
$$

num4=1;
den4=[1/50 1];
[mag,phase]=bode(numT,denT,w); [mag1,phase1]=bode(num1,den1,w); [mag2,phase2]=bode(num2,den2,w); [mag3,phase3]=bode(num3,den3,w); [mag4,phase4]=bode(num4,den4,w);

Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following system

$$
G(s)=\frac{1000}{s(s+5)(s+50)}
$$

$$
\Rightarrow G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}
$$

figure(1)
loglog(w,mag,'b','linewidth',3)
hold on
loglog(w,mag1,'r--','linewidth',2)
loglog(w,mag2,'k:','linewidth',2)
loglog(w,mag3,'g-.','linewidth',2)
$\log \log (w, m a g 4, ' m--$-','linewidth',2)
legend('G(j\omega)','K=4','1/j\omega','1/(j\omega/5+1)','1/(j\omega /50+1)')

Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following system

$$
G(s)=\frac{1000}{s(s+5)(s+50)}
$$

$$
\Rightarrow G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}
$$

figure(2)
semilogx(w,phase,'b','linewidth',3)
hold on
semilogx(w,phase1, 'r--','linewidth',2)
semilogx(w,phase2,' ${ }^{\text {:','linewidth',2) }}$
semilogx(w,phase3,'g-.','linewidth',2)
semilogx(w,phase4,'m--','linewidth',2)
legend('G(j\omega)','K=4','1/j\omega','1/(j\omega/5+1)','1/(j\omega /50+1)')

Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following system

$$
G(s)=\frac{1000}{s(s+5)(s+50)}
$$

$$
\square G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}
$$

Note that the magnitude is in logarithmic scale.

Magnitude in NOT in dB

Bode Diagrams Using MATLAB

Example: Using MATLAB Plot the bode diagrams of the following system

$$
G(s)=\frac{1000}{s(s+5)(s+50)} \quad \Rightarrow G(j \omega)=\frac{4}{j \omega\left(j \frac{\omega}{5}+1\right)\left(j \frac{\omega}{50}+1\right)}
$$

Minimum-Phase Systems and Nonminimum-Phase Systems

- Transfer functions having neither poles nor zeros in the righthalf s plane are minimum-phase transfer functions,
- Whereas those having poles and/or zeros in the right-half s plane are nonminimum-phase transfer functions.
- Systems with minimum-phase transfer functions are called minimum-phase systems,
- whereas those with nonminimum-phase transfer functions are called nonminimum-phase systems.

Transport Lag

- Transport lag, which is also called dead time, is of nonminimumphase behavior and has an excessive phase lag with no attenuation at high frequencies.
- Such transport lags normally exist in thermal, hydraulic, and pneumatic systems.
- Consider the transport lag given by $\quad G(j \omega)=e^{-j \omega T}$
- The magnitude is always equal to unity, since

$$
|G(j \omega)|=|\cos \omega T-j \sin \omega T|=1 \quad \square \quad|G(j \omega)|_{d B}=0
$$

Transport Lag

- Consider the transport lag given by $G(j \omega)=e^{-j \omega T}$
- The magnitude is always equal to unity, since

$$
|G(j \omega)|=|\cos \omega T-j \sin \omega T|=1 \quad \square \quad|G(j \omega)|_{d B}=0
$$

- The phase angle is
$\angle G(j \omega)=-\omega T \quad$ (radians)

$$
\angle G(j \omega)=-57.3 \omega T \quad \text { (degrees) }
$$

$|G(j \omega)|_{d B}$

$$
\angle G(j \omega)
$$

Bode Diagrams

- Consider the following system

$$
G(s)=\frac{\left(T_{a} s+1\right)\left(T_{b} s+1\right) \cdots\left(T_{m} s+1\right)}{s^{N}\left(T_{1} s+1\right)\left(T_{2} s+1\right) \cdots\left(T_{n-N} s+1\right)}
$$

- Where the system is of type N, the order of the numerator is m and the order of the denominator is n.
- The relation between the start- and end-slopes of the magnitude Bode diagrams with the system-Type and order are as follows

Start slope $=-20 \mathrm{~N} \quad \mathrm{~dB} /$ decade
End slope $=-20(n-m) \quad$ dB/decade

Bode Diagrams

- Consider the following minimum-phase system

$$
G(s)=\frac{\left(T_{a} s+1\right)\left(T_{b} s+1\right) \cdots\left(T_{m} s+1\right)}{s^{N}\left(T_{1} s+1\right)\left(T_{2} s+1\right) \cdots\left(T_{n-N} s+1\right)}
$$

- Where the system is of type N, the order of the numerator is m and the order of the denominator is n.
- The relations between the start- and end-phase of the phase Bode diagrams with the system-Type and order in minimumphase systems are as follows

Start phase $=-90 \mathrm{~N}$ degrees
End phase $=-90(n-m)$ degrees

ONLY for minimumphase systems

Polar Plots (Nyquist)

- The polar plot of a sinusoidal transfer function $G(j \omega)$ is a plot of the magnitude of $G(j \omega)$ versus the phase angle of $G(j \omega)$ on polar coordinates as ω is varied from zero to infinity.
- Thus, the polar plot is the locus of vectors $|G(j \omega)| \angle G(j \omega)$ as ω is varied from zero to infinity.
- Note that in polar plots, a positive (negative) phase angle is measured counter-clockwise (clockwise) from the positive real axis.
- The polar plot is often called the Nyquist plot.

Polar Plots (Nyquist)

Polar Plots (Nyquist)

Integrator: Draw the polar plot of the following transfer function

$$
\begin{gathered}
G(s)=\frac{1}{s} \\
G(j \omega)=\frac{1}{j \omega} \quad \Rightarrow \quad G(j \omega)=0-j \frac{1}{\omega} \\
\operatorname{Re}[G(j \omega)]=0 \quad \& \quad \operatorname{Im}[G(j \omega)]=\frac{-1}{\omega}
\end{gathered}
$$

Polar Plots (Nyquist)

First order: Draw the polar plot of the following transfer function

$$
G(s)=\frac{1}{s+1}
$$

$$
G(j \omega)=\frac{1}{j \omega+1} \Rightarrow G(j \omega)=\frac{1-j \omega}{1+\omega^{2}} \quad \Rightarrow G(j \omega)=\frac{1}{1+\omega^{2}}-j \frac{\omega}{1+\omega^{2}}
$$

$$
\operatorname{Re}[G(j \omega)]=\frac{1}{1+\omega^{2}} \Rightarrow \begin{cases}\omega \rightarrow 0 & \operatorname{Re} \rightarrow 1 \\ \omega \rightarrow \infty & \operatorname{Re} \rightarrow 0\end{cases}
$$

Note that for all ω, Re>0 and $\operatorname{Im}<0$

$$
\operatorname{Im}[G(j \omega)]=\frac{-\omega}{1+\omega^{2}} \triangleleft \begin{cases}\omega \rightarrow 0 & \text { Im } \rightarrow 0 \\ \omega \rightarrow \infty & \text { Im } \rightarrow 0\end{cases}
$$

Polar Plots (Nyquist)

First order

$$
\begin{gathered}
G(s)=\frac{1}{s+1} \quad \operatorname{Re}[G(j \omega)]=\frac{1}{1+\omega^{2}} \quad \operatorname{Im}[G(j \omega)]=\frac{-\omega}{1+\omega^{2}} \\
\omega=1 \Rightarrow \begin{cases}\operatorname{Re} \rightarrow 0.5 \\
\operatorname{Im} \rightarrow-0.5\end{cases}
\end{gathered}
$$

Polar Plots (Nyquist)

Second order: Draw the polar plot of the following transfer function

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \Rightarrow G(j \omega)=\frac{1}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)+j 2 \zeta \frac{\omega}{\omega_{n}}}
$$

$$
G(j \omega)=\frac{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+4 \zeta^{2} \frac{\omega^{2}}{\omega_{n}^{2}}}-j \frac{2 \zeta \frac{\omega}{\omega_{n}}}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+4 \zeta^{2} \frac{\omega^{2}}{\omega_{n}^{2}}}
$$

Polar Plots (Nyquist)

Second order:

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$$
\operatorname{Re}[G(j \omega)]=\frac{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+4 \zeta^{2} \frac{\omega^{2}}{\omega_{n}^{2}}} \Rightarrow \operatorname{Re}[G(j \omega)]= \begin{cases}1 & \omega \rightarrow 0 \\ 0 & \omega=\omega_{n} \\ 0 & \omega \rightarrow \infty\end{cases}
$$

$$
\operatorname{Im}[G(j \omega)]=-\frac{2 \zeta \frac{\omega}{\omega_{n}}}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+4 \zeta^{2} \frac{\omega^{2}}{\omega_{n}^{2}}} \Rightarrow \operatorname{Im}[G(j \omega)]= \begin{cases}0 & \omega \rightarrow 0 \\ \frac{1}{2 \zeta} & \omega=\omega_{n} \\ 0 & \omega \rightarrow \infty\end{cases}
$$

Polar Plots (Nyquist)

Second order:

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$$
\operatorname{Re}[G(j \omega)]=\frac{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+4 \zeta^{2} \frac{\omega^{2}}{\omega_{n}^{2}}}
$$

$$
\operatorname{Im}[G(j \omega)]=-\frac{2 \zeta \frac{\omega}{\omega_{n}}}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+4 \zeta^{2} \frac{\omega^{2}}{\omega_{n}^{2}}}
$$

Polar Plots (Nyquist)

Transport lag: Draw the polar plot of the following transfer function

$$
G(s)=e^{-T_{s}} \quad \Rightarrow G(j \omega)=e^{-j T \omega} \quad \Rightarrow G(j \omega)=\cos (T \omega)-j \sin (T \omega)
$$

Polar Plots (Nyquist)

Example: Draw the polar plot of the following transfer function

$$
\begin{aligned}
& G(s)=\frac{e^{-k s}}{1+T s} \\
& G(j \omega)=\frac{e^{-j k \omega}}{1+j T \omega}
\end{aligned}
$$

$$
|G(j \omega)|=\frac{1}{\sqrt{1+T^{2} \omega^{2}}}
$$

$$
\angle G(j \omega)=-k \omega-\tan ^{-1} T \omega
$$

Polar Plots (Nyquist)

Example: Draw the polar plot of the following transfer function

$$
\begin{aligned}
& G(s)=\frac{1}{s(T s+1)} \Rightarrow G(j \omega)=\frac{1}{j \omega(j T \omega+1)} \\
& G(j \omega)=-\frac{T}{1+T^{2} \omega^{2}}-j \frac{1}{\omega\left(1+T^{2} \omega^{2}\right)} \\
& \lim _{\omega \rightarrow 0} G(j \omega)=-T-j \infty \\
& \lim _{\omega \rightarrow \infty} G(j \omega)=0-j 0
\end{aligned}
$$

General Shapes of Polar Plots

The polar plot of the following transfer function

$$
G(j \omega)=\frac{\left(1+j \omega T_{a}\right)\left(1+j \omega T_{b}\right) \cdots}{(j \omega)^{\lambda}\left(1+j \omega T_{1}\right)\left(1+j \omega T_{2}\right) \cdots} \quad \Rightarrow \quad G(j \omega)=\frac{b_{0}(j \omega)^{m}+b_{1}(j \omega)^{m-1}+\cdots}{a_{0}(j \omega)^{n}+a_{1}(j \omega)^{n-1}+\cdots}
$$

where $n>m$, will have the following general shapes:

1. For $\lambda=0$ or type 0 systems:

The starting point of the polar plot (which corresponds to $\omega=0$) is finite and is on the positive real axis.
The tangent to the polar plot at $\omega=0$ is perpendicular to the real axis. The terminal point, which corresponds to $\omega=\infty$, is at the origin, and the curve is tangent to one of the axes.

General Shapes of Polar Plots

2. For $\lambda=1$ or type 1 systems:

At $\omega=\mathbf{0}$, the magnitude of $G(j \omega)$ is infinity, and the phase angle becomes -90°.

At low frequencies, the polar plot is asymptotic to a line parallel to the negative imaginary axis.

At $\omega=\infty$, the magnitude becomes zero, and the curve converges to the origin and is tangent to one of the axes.

General Shapes of Polar Plots

2. For $\lambda=2$ or type 2 systems:

At $\omega=0$, the magnitude of $G(j \omega)$ is infinity, and the phase angle becomes -180°.

At low frequencies, the polar plot may be asymptotic to the negative real axis.

At $\omega=\infty$, the magnitude becomes zero, and the curve converges to the origin and is tangent to one of the axes.

Drawing Nyquist Plots with MATLAB

Consider a transfer function as

$$
G(s)=\frac{\operatorname{num}(s)}{\operatorname{den}(s)}
$$

The Nyquist plot in MATLAB is obtained using the following command:

nyquist(num,den,w)

Where num is the vector corresponding to the coefficients of the numerator, den is the vector corresponding to the coefficients of the denominator and w is the user-specified frequency vector.

Drawing Nyquist Plots with MATLAB

Example: Consider a transfer function as

$$
G(s)=\frac{1}{s^{2}+0.8 s+1}
$$

The Nyquist plot in MATLAB is obtained using the following command:

```
num=[1];
den=[1 0.8 1];
nyquist(num,den)
title('Nyquist Plot of G(s) = 1/(s^2 + 0.8s + 1)')
```


Drawing Nyquist Plots with MATLAB

Example: Consider a transfer function as $\quad G(s)=\frac{1}{s^{2}+0.8 s+1}$
Nyquist Plot of $G(s)=1 /\left(s^{2}+0.8 s+1\right)$

Log-Magnitude versus Phase Plots (Nichols Plots)

- Another approach to graphically portraying the frequency-response characteristics is to use the log-magnitude-versus-phase plot,
- which is a plot of the logarithmic magnitude in decibels versus the phase angle.
- In the log-magnitude-versus-phase
 plot, the two curves in the Bode diagram are combined into one.

Log-Magnitude versus Phase Plots (Nichols Plots)

(a) Bode diagram; (b) polar plot; (c) log-magnitude-versus-phase plot of a second order system.

(a)

(b)

(c)

Nyquist Stability Criterion

- The Nyquist stability criterion determines the stability of a closed-loop system from its open-loop frequency response and open-loop poles.
- Consider the following closed-loop transfer function

$$
\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}
$$

- For stability, all roots of the characteristic equation must lie in the left-half s plane.

$$
1+G(s) H(s)=0
$$

- The Nyquist stability criterion relates the open-loop frequency response $G(j \omega) H(j \omega)$ to the number of zeros and poles of $1+G(s) H(s)$ that lie in the right-half s plane.

Conformal Mapping

- Consider the following open-loop transfer function
- The characteristic equation is

$$
G(s) H(s)=\frac{2}{s-1}
$$

$$
F(s)=1+G(s) H(s)=1+\frac{2}{s-1}=\frac{s+1}{s-1}=0
$$

- The function $F(s)$ is analytic everywhere in the s plane except at its singular points.
- For each point of analyticity in the s plane, there corresponds a point in the $F(s)$ plane.
- For example, if $s=2+j 1$, then $F(s)$ becomes

$$
F(2+j 1)=\frac{2+j 1+1}{2+j 1-1}=2-j 1
$$

Conformal Mapping

For a given continuous closed path in the s plane, which does not go through any singular points, there corresponds a closed curve in the $F(s)$ plane.

Encirclement of the Origin

- Suppose that representative point s traces out a contour in the s plane in the clockwise direction.

1. If the contour in the s plane encloses the pole of $F(s)$, there is one encirclement of the origin of the $F(s)$ plane by the locus of $F(s)$ in the counter-clockwise direction.

Encirclement of the Origin

- Suppose that representative point s traces out a contour in the s plane in the clockwise direction.

2. If the contour in the s plane encloses the zero of $F(s)$, there is one encirclement of the origin of the $F(s)$ plane by the locus of $F(s)$ in the clockwise direction.

Encirclement of the Origin

- Suppose that representative point s traces out a contour in the s plane in the clockwise direction.

3. If the contour in the s plane encloses both the zero and the pole Or if the counter encloses neither the zero nor the pole of $F(s)$, then there is no encirclement of the origin of the $F(s)$ plane by the locus of $F(s)$.

Encirclement of the Origin

- The direction of encirclement of the origin of the $F(s)$ plane by the locus of $F(s)$ depends on whether the contour in the s plane encloses a pole or a zero.
- If the contour in the s plane encloses equal numbers of poles and zeros, then the corresponding closed curve in the $F(s)$ plane does not encircle the origin of the $F(s)$ plane.

Mapping

- Let $F(s)$ be a ratio of two polynomials in s.
- Let P be the number of poles of $F(s)$ and Z be the number of zeros of $F(s)$ that lie inside some closed contour in the s plane, with multiplicity of poles and zeros accounted for.
- Let the contour be such that it does not pass through any poles or zeros of $F(s)$.
- This closed contour in the s plane is then mapped into the $F(s)$ plane as a closed curve.
- The total number N of clockwise encirclements of the origin of the $F(s)$ plane, as a representative point s traces out the entire contour in the clockwise direction, is equal to $\mathbb{Z}-P$.
$N=Z-P$
The mapping just gives the difference of Z and P, NOT P and Z

Mapping

$N=Z-P\left\{\begin{array}{ll}N>0 & \square Z>P \\ N<0 & \square Z<P\end{array} \begin{array}{l}\text { Clockwise encirclements } \\ \text { Counter-clockwise encirclements }\end{array}\right.$

- The number P can be readily determined for $F(s)=1+G(s) H(s)$ from the function $G(s) H(s)$.
- Therefore Z (the number of poles of the closed-loop system lie inside some closed contour in the s plane) can be found from P and N.

An Important Note

- Instead of mapping into $F(s)=1+G(s) H(s)$ the mapping is performed into $\Gamma(s)=G(s) H(s)$.
- Therefore, instead of counting the number of clockwise encirclements of the origin, the number clockwise encirclements of the -1 point is counted.

Procedure of Nyquist Stability Criterion

1. Form loop transfer function $G(s) H(s)$.
2. Form a semi-circle closed contour in the right-half of s plane that does not pass though the poles or zeros of $G(s) H(s)$. The direction of the semicircle is clockwise.
3. \quad Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.
4. Find the number of poles of $G(s) H(s)$ in the right-half s plane, i.e. P.
5. Count the number of clockwise encirclements of -1 point, i.e. N.
6. Find $Z=N+P$ which is the number of closed-loop poles in the right-half s plane.
7. If $Z=0$, the closed-loop system is stable.

Summary of Nyquist Stability Criterion

$$
Z=N+P
$$

where
$Z \quad$ number of zeros of $1+G(s) H(s)$ in the right-half s plane $N \quad$ number of clockwise encirclements of the $-1+j 0$ point $P \quad$ number of poles of $G(s) H(s)$ in the right-half s plane

If $Z=0$, the closed-loop system is stable.

Some Points

If there is any poles or zeros of $G(s) H(s)$ on the imaginary axis, the semi-circle in right-half of s plane should encircle them

If the locus of $G(j \omega) H(j \omega)$ passes through the $-1+j 0$ point, then zeros of the characteristic equation, or closed-loop poles, are located on the $j \omega$ axis.

Nyquist Stability Criterion

- Example: Discuss on the stability of the following system using Nyquist stability criterion

Nyquist Stability Criterion

Solution:

1. Form loop transfer function $G(s) H(s)$.

$$
G(s) H(s)=\frac{6}{(s+1)(s+2)(s+3)}
$$

- The poles of $G(s) H(s)$ are $s=-1 \quad s=-2 \quad s=-3$
- $G(s) H(s)$ has no zero.

Nyquist Stability Criterion

Solution:

2. Form a semi-circle closed contour in the right-half of s plane that does not pass though the poles or zeros of $G(s) H(s)$.
$j \omega$
splane

Nyquist Stability Criterion

Solution:

3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section $A D: \quad s=\underset{R \rightarrow \infty}{R} e^{j \theta}$

$$
\Gamma(s)=G(s) H(s)=\frac{6}{(s+1)(s+2)(s+3)}
$$

$$
\Gamma\left(R e^{j \theta}\right)=\frac{6}{\left(R e^{j \theta}+1\right)\left(R e^{j \theta}+2\right)\left(R e^{j \theta}+3\right)}
$$

$\Gamma\left(R e^{j \theta}\right)=\frac{6}{R^{3} e^{j 3 \theta}}=\varepsilon e^{-j 3 \theta}$

Nyquist Stability Criterion

Solution:

3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section $A D: \quad s=R_{R \rightarrow \infty} e^{j \theta} \quad \Gamma\left(R e^{j \theta}\right)=\varepsilon e^{-j 3 \theta}$

$$
\begin{array}{ll}
A \rightarrow A^{\prime} & \Gamma=\varepsilon e^{j 0} \\
B \rightarrow B^{\prime} & \Gamma=\varepsilon e^{j \pi / 2} \\
C \rightarrow C^{\prime} & \Gamma=\varepsilon e^{j \pi} \\
D \rightarrow D^{\prime} & \Gamma=\varepsilon e^{j 3 \pi / 2}
\end{array}
$$

Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section $D E: \quad s=-j \omega$
$\Gamma(s)=G(s) H(s)=\frac{6}{(s+1)(s+2)(s+3)}$
$\Gamma(j \omega)=\frac{6}{(-j \omega+1)(-j \omega+2)(-j \omega+3)}$
$\Gamma(j \omega)=\frac{6}{6\left(1-\omega^{2}\right)-j \omega\left(11-\omega^{2}\right)}$

Nyquist Stability Criterion ${ }_{j}$

Solution:
3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section $D E: \quad s=-j \omega$
$\Gamma(j \omega)=\frac{6}{6\left(1-\omega^{2}\right)-j \omega\left(11-\omega^{2}\right)}$

$\operatorname{Re}[\Gamma(j \omega)]=\frac{36\left(1-\omega^{2}\right)}{36\left(1-\omega^{2}\right)^{2}+\omega^{2}\left(11-\omega^{2}\right)^{2}}$
$\operatorname{Im}[\Gamma(j \omega)]=\frac{6 \omega\left(11-\omega^{2}\right)}{36\left(1-\omega^{2}\right)^{2}+\omega^{2}\left(11-\omega^{2}\right)^{2}}$

Nyquist Stability Criterion

Solution:
3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section DE: $\quad s=-j \omega$
$\operatorname{Re}[\Gamma(j \omega)]=\frac{36\left(1-\omega^{2}\right)}{36\left(1-\omega^{2}\right)^{2}+\omega^{2}\left(11-\omega^{2}\right)^{2}}= \begin{cases}-0.1 & \omega=\sqrt{11} \\ 0 & \omega=1 \\ 1 & \omega=0\end{cases}$
$\operatorname{Im}[\Gamma(j \omega)]=\frac{6 \omega\left(11-\omega^{2}\right)}{36\left(1-\omega^{2}\right)^{2}+\omega^{2}\left(11-\omega^{2}\right)^{2}}= \begin{cases}0 & \omega \rightarrow \infty \\ 0 & \omega=\sqrt{11} \\ 0.6 & \omega=1 \\ 0 & \omega=0\end{cases}$

Nyquist Stability Criterion

s plane
Solution:
3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$. Section $D E: \quad s=-j \omega$
$\operatorname{Re}[\Gamma(j \omega)]= \begin{cases}0 & \omega \rightarrow \infty \\ -0.1 & \omega=\sqrt{11} \\ 0 & \omega=1 \\ 1 & \omega=0\end{cases}$
$\operatorname{Im}[\Gamma(j \omega)]= \begin{cases}0 & \omega \rightarrow \infty \\ 0 & \omega=\sqrt{11} \\ 0.6 & \omega=1 \\ 0 & \omega=0\end{cases}$

Nyquist Stability Criterion

$j \omega$
Solution:
3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

s plane

Nyquist Stability Criterion

4. Find the number of poles of $G(s) H(s)$ in the right-half s plane, i.e. P.

s plane

Nyquist Stability Criterion

$$
N=0
$$

Nyquist Stability Criterion

The system is stable.

Nyquist Stability Criterion

- Example: Discuss on the stability of the unity feedback system with the following forward path transfer function using Nyquist stability criterion

$$
G(s)=\frac{s-1}{s(s+1)}
$$

Nyquist Stability Criterion

Solution:

1. Form loop transfer function $G(s) H(s)$.

$$
G(s) H(s)=\frac{s-1}{s(s+1)}
$$

- The poles of $G(s) H(s)$ are $\quad s=0 \quad s=-1$
- The zero of $G(s) H(s)$ is $\quad s=1$

Nyquist Stability Criterion

2. Form a semi-circle closed contour in the right-half of s plane that does not pass though the poles or zeros of $G(s) H(s)$.

Nyquist Stability Criterion

Solution:

3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section $A B: \quad s=\underset{R \rightarrow \infty}{R} e^{j \theta}$
$\Gamma(s)=G(s) H(s)=\frac{(s-1)}{s(s+1)}$
$\Gamma\left(R e^{j \theta}\right)=\frac{\left(R e^{j \theta}-1\right)}{R e^{j \theta}\left(R e^{j \theta}+1\right)}$

$\Gamma\left(R e^{j \theta}\right)=\varepsilon e^{-j \theta}$

Nyquist Stability Criterion

$(s) H(s)$.
Section $A B: \quad s={ }_{R \rightarrow \infty}^{R} e^{j \theta} \quad \Gamma\left(R e^{j \theta}\right)=\varepsilon e^{-j \theta}$

$$
\begin{array}{ll}
A \rightarrow A^{\prime} & \Gamma=\varepsilon e^{j 0} \\
B \rightarrow B^{\prime} & \Gamma=\varepsilon e^{j \pi / 2}
\end{array}
$$

Γ plane

Nyquist Stability Criterion

Solution:

3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

$$
\text { Section } B C: \quad s=-j \omega
$$

$\Gamma(s)=G(s) H(s)=\frac{(s-1)}{s(s+1)}$
$\Gamma(j \omega)=\frac{(-j \omega-1)}{-j \omega(-j \omega+1)}$
$\Gamma(j \omega)=\frac{2 \omega+j\left(\omega^{2}-1\right)}{\omega\left(\omega^{2}+1\right)}$

Nyquist Stability Criterion

Solution:

3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section $B C: \quad s=-j \omega$

$$
\begin{aligned}
& \operatorname{Re}[\Gamma(j \omega)]=\frac{2 \omega}{\omega\left(\omega^{2}+1\right)}= \begin{cases}0 & \omega \rightarrow \infty \\
1 & \omega=1 \\
2 & \omega=0\end{cases} \\
& \operatorname{Im}[\Gamma(j \omega)]=\frac{\left(\omega^{2}-1\right)}{\omega\left(\omega^{2}+1\right)}= \begin{cases}0 & \omega \rightarrow \infty \\
0 & \omega=1 \\
-\infty & \omega-0\end{cases}
\end{aligned}
$$

Nyquist Stability Criterion

Solution:

3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section $C D: \quad s=\underset{\varepsilon \rightarrow 0}{\varepsilon} e^{j \theta}$

$$
\begin{aligned}
& \Gamma(s)=G(s) H(s)=\frac{(s-1)}{s(s+1)} \\
& \Gamma\left(\varepsilon e^{j \theta}\right)=\frac{\left(\varepsilon e^{j \theta}-1\right)}{\varepsilon e^{j \theta}\left(\varepsilon e^{j \theta}+1\right)}
\end{aligned}
$$

$$
\Gamma\left(\varepsilon e^{j \theta}\right)=R e^{j(\pi-\theta)}
$$

$$
-\frac{\pi}{2} \leq \theta \leq 0
$$

Nyquist Stability Criterion

$j \omega$

Solution:

3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Section $C D: \quad s=\underset{\varepsilon \rightarrow 0}{\mathcal{E}} e^{j \theta}$

$$
\Gamma\left(\varepsilon e^{j \theta}\right)=R e^{j(\pi-\theta)}
$$

$$
-\frac{\pi}{2} \leq \theta \leq 0
$$

$C \rightarrow C^{\prime}$
$\theta=-\frac{\pi}{2}$
$\Gamma=R e^{j 3 \pi / 2}$

$$
D \rightarrow D^{\prime} \quad \theta=0 \quad \Gamma=R e^{j \pi}
$$

Nyquist Stability Criterion

plane

Solution:

3. Map the contour in s plane into $\Gamma(s)=G(s) H(s)$.

Nyquist Stability Criterion

Solution:

4. Find the number of poles of $G(s) H(s)$ in the right-half s plane, i.e. P.

Nyquist Stability Criterion

Solution:

5. Count the number of clockwise encirclements of -1 point, i.e. N.

Nyquist Stability Criterion

Solution:

6. Find $Z=N+P$ which is the number of closed-loop poles in the right-half s plane.

$Z=1$

The system is unstable.

Nyquist Stability Criterion

- Example: Using Nyquist stability criterion find the range of positive k in which the following system is stable

Nyquist Stability Criterion

Solution:

If $k>10 \Rightarrow N=2 \Rightarrow Z=2$
If $k=10$
If $k<10 \Rightarrow N=0 \Rightarrow Z=0$

Unstable system
Critically stable system
Stable system

Nyquist Stability Criterion

- Example: Using Nyquist stability criterion find the range of positive k in which the following system is stable

Nyquist Stability Criterion

- Solution: The characteristic equation is expressed as

$$
\Delta(s)=1+\frac{1+k s}{s(s+1)}=0 \quad \square \quad \frac{s^{2}+s+1+k s}{s(s+1)}=0
$$

Divide by the parts without k
$s^{2}+s+1+k s=0$

$$
1+\frac{k s}{s^{2}+s+1}=0
$$

$$
G(s) H(s)=\frac{k s}{s^{2}+s+1}
$$

It is the virtual loop transfer function.

Nyquist Stability Criterion

Important note:

- To investigate the stability of system with a variable, e.g. k, using Nyquist stability criterion, the variable should be as a gain in the loop transfer function.

$$
G(s) H(s)=k \frac{N(s)}{D(s)}
$$

- If it is not the case, the virtual loop transfer function should be formed.

Phase Margin \& Gain Margin

1. Gain Margin (GM):

- Assume ω_{p} is the frequency in which $\angle G H\left(j \omega_{p}\right)=-180$

ω_{p} is called phase crossover frequency.

- The gain margin is obtained as $G M=\frac{1}{\left|G H\left(j \omega_{p}\right)\right|}$
- Or in the case of dB it is

$$
G M_{d B}=-\left|G H\left(j \omega_{p}\right)\right|_{d B}
$$

Phase Margin \& Gain Margin

2. Phase Margin (PM):

- Assume ω_{g} is the frequency in which $\left|G H\left(j \omega_{g}\right)\right|=1$ or $\left|G H\left(j \omega_{g}\right)\right|_{d B}=0$

ω_{g} is called gain crossover frequency.

- The phase margin is obtained as $\quad P M=180+\angle G H\left(j \omega_{g}\right)$

Phase and gain margins are useful in minimum-phase systems.

Phase Margin \& Gain Margin

In a minimum-phase system to have stability both phase margin and gain margin in dB should be positive. i.e.

$$
P M=180+\angle G H\left(j \omega_{g}\right)>0 \Rightarrow-180<\angle G H\left(j \omega_{g}\right)<0
$$

and

$$
G M_{d B}=-\left|G H\left(j \omega_{p}\right)\right|_{d B}>0 \Rightarrow G M=\left|G H\left(j \omega_{p}\right)\right|<1
$$

Note that phase and gain margins cannot be used for stability analysis in non-minimum-phase systems.

Phase Margin \& Gain Margin in Polar Diagram

Consider a minimum-phase system with the following polar diagram

Phase Margin \& Gain Margin in Polar Diagram

In polar diagram of minimum-phase systems, moving from zero frequency to infinity frequency, if point -1 is located on the left side of the trajectory (from zero to infinity frequency), the system is stable.

Phase Margin \& Gain Margin in Polar Diagram

Example: Consider the following polar diagram of a minimum-phase system. Discuss on the stability if

1) Point -1 is at point A

Phase Margin \& Gain Margin in Polar Diagram

Solution:

1. $A=-1 \quad P M<0$
unstable
2. $B=-1 \quad P M>0 \& G M>0$ stable $\operatorname{Im}[G H(j \omega)]$
3. $C=-1 \quad P M<0 \& G M<0$ unstable

Relative Stability using Phase Margin \& Gain Margin

- Comparing two stable minimum-phase systems, the one having higher gain margin or in the case of equal gain margins, the one having higher phase margin is more stable.
- In the following examples system I is more stable.

Phase Margin \& Gain Margin in Bode Diagrams

Example: Calculate the gain and phase margins from the following Bode diagrams

Phase Margin \& Gain Margin in Bode Diagrams

Solution: Find the phase and gain crossover frequency (ω_{p} and ω_{g})

$$
\omega_{g}=0.78 \mathrm{rad} / \mathrm{s}
$$

$$
\omega_{p}=2.2 \mathrm{rad} / \mathrm{s}
$$

Phase Margin \& Gain Margin in Bode Diagrams

Solution: Find the gain margin

$$
\omega_{p}=2.2 \mathrm{rad} / \mathrm{s}
$$

$$
\begin{aligned}
G M_{d B} & =-\left|G H\left(j \omega_{p}\right)\right|_{d B} \\
& =-(-16)=16 \mathrm{~dB}
\end{aligned}
$$

Phase Margin \& Gain Margin in Bode Diagrams

Solution: Find the phase margin

$$
\begin{aligned}
& \omega_{g}=0.78 \mathrm{rad} / \mathrm{s} \\
& \\
& \begin{aligned}
P M & =180+\angle G H\left(j \omega_{g}\right) \\
& =180-137 \\
& =43^{\circ}
\end{aligned}
\end{aligned}
$$

A Few Points on Phase Margin \& Gain Margin

1. Gain margin of first- and second-order systems is infinity since Bode phase diagram never reaches -180 degrees.
2. Non-minimum-phase system with negative phase margin and/or negative gain margin MAY be stable.
3. In minimum-phase systems with several phase and/or gain margins, only one positive phase margin and one positive gain margin leads to stability.
4. In practice for good stability $\mathrm{PM}>45$ degrees and $\mathrm{GM}>6 \mathrm{~dB}$.
