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Introduction 
• By the term frequency response, we mean the steady-state 

response of a system to a sinusoidal input.  
• In frequency-response methods, we vary the frequency of the 

input signal over a certain range and study the resulting 
response. 

• Assume the following system, if the input is sinusoidal 
 
 
The steady state output is 
 
 
 
where G(jw) is called the sinusoidal transfer function. 
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Introduction 
• Example 1: Find the steady-state output of the following 

system in response to 
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Presenting Frequency-Response 
Characteristics in Graphical Forms 

• The sinusoidal transfer function, a complex function of the 
frequency w, is characterized by its magnitude and phase 
angle, with frequency as the parameter.  
 

• There are three commonly used representations of sinusoidal 
transfer functions: 
 

1. Bode diagram or logarithmic plot 
 

2. Nyquist plot or polar plot 
 

3. Log-magnitude-versus-phase plot (Nichols plots) 
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Bode Diagrams 

A Bode diagram consists of two graphs: 
 
1. One is a plot of the logarithm of the magnitude of a 

sinusoidal transfer function; 
 

2. The other is a plot of the phase angle; Both are plotted 
against the frequency on a logarithmic scale. 
 

The standard representation of the logarithmic magnitude of 
G(jw) is 20 log |G(jw)|, where the base of the logarithm is 10. 
The unit used in this representation of the magnitude is the 
decibel (dB). 
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Basic Factors 

The basic factors that very frequently occur in an arbitrary 
transfer function G(jw)H(jw) are 
 
1.   Gain K 

 
2.   Integral and derivative factors  
 
3.   First-order factors 
 
4.   Quadratic factors 
 
 
Note that adding the logarithms of the gains corresponds to 
multiplying them together. 
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Basic Factors 

1.   Gain K  
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Basic Factors 

2.   Integral   
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Basic Factors 

3.   Derivative 
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Basic Factors 

4.   First-order 
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Basic Factors 

4.   First-order 
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Basic Factors 

5.   First-order 
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Basic Factors 

5.   First-order 
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Basic Factors 

6.   First-order 
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Basic Factors 

6.   First-order 
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Basic Factors 

7.   Second-order 
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Basic Factors 

7.   Second-order 
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    Basic Factors 

7.   Second-order 
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    Basic Factors 

7.   Second-order 
The Resonant Frequency wr  and the Resonant Peak Value Mr 
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• In the first-order system of the following form,  
 
 
 

the corner frequency is 
 
• In the second-order system of the following form 
 
 
 
 

the corner frequency is  
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• Example 1: 
 
 
 

the corner frequency is 
 
• Example 2: 
 
 
 
 

the corner frequency is  
23 

    Basic Factors 

Corner frequency 
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The corner frequencies are                                      and      
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Bode Diagrams 

Example: Plot the bode diagrams of the following system 
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Bode Diagrams (Magnitude) 

Example: Plot the bode diagrams of the following system 
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Bode Diagrams (Phase) 

Example: Plot the bode diagrams of the following system 
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w=logspace(-1,3,100); 
numT=1000; 
denT=[1 55 250 0]; 
 num1=4; 
den1=1; 
 num2=1; 
den2=[1 0]; 
 num3=1; 
den3=[1/5 1]; 
  27 

Bode Diagrams Using MATLAB 

Example: Using MATLAB Plot the bode diagrams of the following 
system 

)50)(5(

1000
)(




sss
sG

)1()1(

4
)(

505



www

w
jjj

jG

2017                                           Shiraz University of Technology   Dr. A. Rahideh 



num4=1; 
den4=[1/50 1]; 
 
[mag,phase]=bode(numT,denT,w); 
[mag1,phase1]=bode(num1,den1,w); 
[mag2,phase2]=bode(num2,den2,w); 
[mag3,phase3]=bode(num3,den3,w); 
[mag4,phase4]=bode(num4,den4,w); 
  
28 

Bode Diagrams Using MATLAB 

Example: Using MATLAB Plot the bode diagrams of the following 
system 
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figure(1) 
loglog(w,mag,'b','linewidth',3) 
hold on 
loglog(w,mag1,'r--','linewidth',2) 
loglog(w,mag2,'k:','linewidth',2) 
loglog(w,mag3,'g-.','linewidth',2) 
loglog(w,mag4,'m--','linewidth',2) 
legend('G(j\omega)','K=4','1/j\omega','1/(j\omega/5+1)','1/(j\omega
/50+1)') 
29 

Bode Diagrams Using MATLAB 

Example: Using MATLAB Plot the bode diagrams of the following 
system 
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figure(2) 
semilogx(w,phase,'b','linewidth',3) 
hold on 
semilogx(w,phase1,'r--','linewidth',2) 
semilogx(w,phase2,'k:','linewidth',2) 
semilogx(w,phase3,'g-.','linewidth',2) 
semilogx(w,phase4,'m--','linewidth',2) 
legend('G(j\omega)','K=4','1/j\omega','1/(j\omega/5+1)','1/(j\omega
/50+1)') 
30 

Bode Diagrams Using MATLAB 

Example: Using MATLAB Plot the bode diagrams of the following 
system 
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Bode Diagrams Using MATLAB 

Example: Using MATLAB Plot the bode diagrams of the following 
system 
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Bode Diagrams Using MATLAB 

Example: Using MATLAB Plot the bode diagrams of the following 
system 
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Minimum-Phase Systems and 
Nonminimum-Phase Systems 

• Transfer functions having neither poles nor zeros in the right-
half s plane are minimum-phase transfer functions, 
 

• Whereas those having poles and/or zeros in the right-half s 
plane are nonminimum-phase transfer functions.  
 

• Systems with minimum-phase transfer functions are called 
minimum-phase systems,  
 

• whereas those with nonminimum-phase transfer functions 
are called nonminimum-phase systems. 

2017                                           Shiraz University of Technology   Dr. A. Rahideh 



34 

Transport Lag 

• Transport lag, which is also called dead time, is of  non-
minimumphase behavior and has an excessive phase lag with 
no attenuation at high frequencies. 

 
• Such transport lags normally exist in thermal, hydraulic, and 

pneumatic systems. 
 
• Consider the transport lag given by 

 
• The magnitude is always equal to unity, since 
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Transport Lag 

• Consider the transport lag given by 
 

• The magnitude is always equal to unity, since 
 
 

• The phase angle is 
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Bode Diagrams 

• Consider the following system 
 
 
 

• Where the system is of type N, the order of the numerator is 
m and the order of the denominator is n. 
 

• The relation between the start- and end-slopes of the 
magnitude Bode diagrams  with the system-Type and order 
are as follows 
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Bode Diagrams 

• Consider the following minimum-phase system 
 
 
 

• Where the system is of type N, the order of the numerator is m 
and the order of the denominator is n. 
 

• The relations between the start- and end-phase of the phase 
Bode diagrams  with the system-Type and order in minimum-
phase systems are as follows 
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Polar Plots (Nyquist) 

• The polar plot of a sinusoidal transfer function G(jw) is a plot of 
the magnitude of G(jw) versus the phase angle of G(jw) on 
polar coordinates as w is varied from zero to infinity. 
 

• Thus, the polar plot is the locus of vectors                                  as 
w is varied from zero to infinity.  
 

• Note that in polar plots, a positive (negative) phase angle is 
measured counter-clockwise (clockwise) from the positive real 
axis.  
 

• The polar plot is often called the Nyquist plot. 
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Polar Plots (Nyquist) 
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Polar Plots (Nyquist) 

Integrator: Draw the polar plot of the following transfer function 
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Polar Plots (Nyquist) 

First order: Draw the polar plot of the following transfer function 
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Polar Plots (Nyquist) 

First order 
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Polar Plots (Nyquist) 

Second order: Draw the polar plot of the following transfer 
function 
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Polar Plots (Nyquist) 

Second order: 22
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Polar Plots (Nyquist) 

Second order: 22
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Polar Plots (Nyquist) 

Transport lag: Draw the polar plot of the following transfer 
function 
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Polar Plots (Nyquist) 

Example: Draw the polar plot of the following transfer function 
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Polar Plots (Nyquist) 

Example: Draw the polar plot of the following transfer function 
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1. For l=0 or type 0 systems:  
The starting point of the polar plot 
(which corresponds to w=0) is finite 
and is on the positive real axis. 
The tangent to the polar plot at w=0 is 
perpendicular to the real axis.  
The terminal point, which corresponds 
to            , is at the origin, and the curve 
is tangent to one of the axes. 49 

General Shapes of Polar Plots 

The polar plot of the following transfer function 
 
 
 
where n>m, will have the following general shapes: 
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At             , the magnitude becomes 
zero, and the curve converges to the 
origin and is tangent to one of the 
axes. 

50 

General Shapes of Polar Plots 

2. For l=1 or type 1 systems:  
At w=0, the magnitude of G(jw) is infinity, and the phase 
angle becomes –90°.  
 
At low frequencies, the polar plot is asymptotic to a line 
parallel to the negative imaginary axis.  

w
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At             , the magnitude becomes 
zero, and the curve converges to the 
origin and is tangent to one of the 
axes. 

51 

General Shapes of Polar Plots 

2. For l=2 or type 2 systems:  
At w=0, the magnitude of G(jw) is infinity, and the phase 
angle becomes –180°.  
 
At low frequencies, the polar plot may be asymptotic to the 
negative real axis.  

w
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Drawing Nyquist Plots with MATLAB 

Consider a transfer function as 
 
 
 
The Nyquist plot in MATLAB is obtained using the following 
command: 
 
           nyquist(num,den,w) 
 
Where num is the vector corresponding to the coefficients of the 
numerator, den is the vector corresponding to the coefficients of 
the denominator and w is the user-specified frequency vector.  
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Drawing Nyquist Plots with MATLAB 

Example: Consider a transfer function as 
 
 
 
The Nyquist plot in MATLAB is obtained using the following 
command: 
 
 num=[1]; 
 den=[1 0.8 1]; 
 nyquist(num,den) 
 title('Nyquist Plot of G(s) = 1/(s^2 + 0.8s + 1)') 
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Drawing Nyquist Plots with MATLAB 

Example: Consider a transfer function as 
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Log-Magnitude versus Phase Plots 
(Nichols Plots) 

• Another approach to graphically 
portraying the frequency-response 
characteristics is to use the log-
magnitude-versus-phase plot,  
 

• which is a plot of the logarithmic 
magnitude in decibels versus the 
phase angle. 
 

• In the log-magnitude-versus-phase 
plot, the two curves in the Bode 
diagram are combined into one. 
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Log-Magnitude versus Phase Plots 
(Nichols Plots) 

(a) Bode diagram; (b) polar plot; (c) log-magnitude-versus-phase 
plot of a second order system. 
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Nyquist Stability Criterion 

• The Nyquist stability criterion determines the stability of a 
closed-loop system from its open-loop frequency response 
and open-loop poles. 

• Consider the following closed-loop transfer function 
 
 
 

• For stability, all roots of the characteristic equation must lie in 
the left-half s plane. 
 

• The Nyquist stability criterion relates the open-loop 
frequency response G(jw)H(jw) to the number of zeros and 
poles of  1+G(s)H(s) that lie in the right-half s plane. 
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Conformal Mapping 

• Consider the following open-loop transfer function 
 
 

• The characteristic equation is 
 
 
 

• The function F(s) is analytic everywhere in the s plane except 
at its singular points. 

• For each point of analyticity in the s plane, there corresponds a 
point in the F(s) plane. 

• For example, if s=2+j1, then F(s) becomes 
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Conformal Mapping 
For a given continuous closed path in the s plane, which does not 
go through any singular points, there corresponds a closed curve 
in the F(s) plane. 
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Encirclement of the Origin 
• Suppose that representative point s traces out a contour in 

the s plane in the clockwise direction. 
1. If the contour in the s plane encloses the pole of F(s), there is 

one encirclement of the origin of the F(s) plane by the locus 
of F(s) in the counter-clockwise direction. 
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Encirclement of the Origin 
• Suppose that representative point s traces out a contour in 

the s plane in the clockwise direction. 
2. If the contour in the s plane encloses the zero of F(s), there is 

one encirclement of the origin of the F(s) plane by the locus 
of F(s) in the clockwise direction. 
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Encirclement of the Origin 
• Suppose that representative point s traces out a contour in 

the s plane in the clockwise direction. 
3. If the contour in the s plane encloses both the zero and the 

pole or if the counter encloses neither the zero nor the pole 

of F(s), then there is no encirclement of the origin of the F(s) 
plane by the locus of F(s). 
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Encirclement of the Origin 

• The direction of encirclement of the origin of the 
F(s) plane by the locus of F(s) depends on whether 
the contour in the s plane encloses a pole or a zero.  
 

• If the contour in the s plane encloses equal numbers 
of poles and zeros, then the corresponding closed 
curve in the F(s) plane does not encircle the origin of 
the F(s) plane. 
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Mapping 

• Let F(s) be a ratio of two polynomials in s.  
• Let P be the number of poles of F(s) and Z be the number of 

zeros of F(s) that lie inside some closed contour in the s plane, 
with multiplicity of poles and zeros accounted for.  

• Let the contour be such that it does not pass through any 
poles or zeros of F(s).  

• This closed contour in the s plane is then mapped into the F(s) 
plane as a closed curve.  

• The total number N of clockwise encirclements of the origin 
of the F(s) plane, as a representative point s traces out the 
entire contour in the clockwise direction, is equal to Z-P. 

 
PZN 

The mapping just gives the difference of Z and P, 
NOT P and Z 
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Mapping 

• The number P can be readily determined for F(s) =1+G(s)H(s) 

from the function G(s)H(s). 
 
• Therefore Z (the number of poles of the closed-loop system 

lie inside some closed contour in the s plane) can be found 
from P and N. 

 

PZN 
0N PZ 

0N PZ 

Clockwise encirclements 

Counter-clockwise encirclements 
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An Important Note 

• Instead of mapping into F(s) =1+G(s)H(s) the 
mapping is performed into G (s)=G(s)H(s). 

 
• Therefore, instead of counting the number of 

clockwise encirclements of the origin, the 
number clockwise encirclements of the -1 
point is counted.  
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Procedure of Nyquist Stability Criterion 

1. Form loop transfer function G(s)H(s). 

 
2. Form a semi-circle closed contour in the right-half of s plane that 

does not pass though the poles or zeros of G(s)H(s). 

 
 

3.  Map the contour in s plane into G (s)=G(s)H(s). 
4. Find the number of poles of G(s)H(s) in the right-half 

s plane, i.e. P. 
5. Count the number of clockwise encirclements of -1 point, i.e. N. 
6. Find                        which is the number of closed-loop poles in the 

right-half s plane. 
7. If Z=0 , the closed-loop system is stable. 

PNZ 

 wj  
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s plane 

The direction of the semicircle is clockwise. 
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Summary of Nyquist Stability Criterion 

 
 
 
where  
Z number of zeros of 1+G(s)H(s) in the right-half s plane 
N number of clockwise encirclements of the –1+j0 point 
P number of poles of G(s)H(s) in the right-half s plane 

 
If Z=0 , the closed-loop system is stable. 

PNZ 
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If the locus of G(jw)H(jw) passes through the –1+j0 point, then zeros 
of the characteristic equation, or closed-loop poles, are located on 
the jw axis. 

69 

Some Points 

If there is any poles or zeros of G(s)H(s) on the imaginary axis, the 
semi-circle in right-half of s plane should encircle them   

 wj  

0  
  

  

s plane 
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Nyquist Stability Criterion 

• Example: Discuss on the stability of the following system using 
Nyquist stability criterion 
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Nyquist Stability Criterion 

Solution: 
 

 

 

1. Form loop transfer function G(s)H(s). 

 

 

 

 

• The poles of  G(s)H(s) are 
 

• G(s)H(s) has no zero. 
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Nyquist Stability Criterion 

Solution: 
 

 

2. Form a semi-circle closed contour in the right-half of s plane 
that does not pass though the poles or zeros of G(s)H(s). 
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section AD:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section AD:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section DE:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section DE:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section DE:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 
Section DE:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 
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Nyquist Stability Criterion 

Solution: 
4. Find the number of poles of G(s)H(s) in  

the right-half s plane, i.e. P. 
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Nyquist Stability Criterion 

Solution: 
5. Count the number of clockwise encirclements 

of -1 point, i.e. N. 
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Nyquist Stability Criterion 

Solution: 
6. Find                        which is the number of  

closed-loop poles in the right-half s plane. 
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Nyquist Stability Criterion 

• Example: Discuss on the stability of the unity feedback system 
with the following forward path transfer function using Nyquist 
stability criterion 
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Nyquist Stability Criterion 

Solution: 
 

 

 

1. Form loop transfer function G(s)H(s). 

 

 

 

 

• The poles of  G(s)H(s) are 
 

• The zero of G(s)H(s) is 
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Nyquist Stability Criterion 

Solution: 
 

 

2. Form a semi-circle closed contour in the right-half of s plane 
that does not pass though the poles or zeros of G(s)H(s). 
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section AB:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section AB:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section BC:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section BC:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section CD:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 

 
Section CD:  
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Nyquist Stability Criterion 

Solution: 
3.  Map the contour in s plane into G (s)=G(s)H(s). 
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Nyquist Stability Criterion 
Solution: 
4. Find the number of poles of G(s)H(s) in  

the right-half s plane, i.e. P. 
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Nyquist Stability Criterion 
Solution: 
5. Count the number of clockwise encirclements 

of -1 point, i.e. N. 
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Nyquist Stability Criterion 
Solution: 
6. Find                        which is the number of  

closed-loop poles in the right-half s plane. 
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Nyquist Stability Criterion 

• Example: Using Nyquist stability criterion find the range of positive 
k in which the following system is stable 
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Nyquist Stability Criterion 
Solution: 
If 
 

If 
  

If                   
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Nyquist Stability Criterion 

• Example: Using Nyquist stability criterion find the range of positive 
k in which the following system is stable 
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Nyquist Stability Criterion 

• Solution: The characteristic equation is expressed as 
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It is the virtual loop transfer function. 

Divide by the parts without k 
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Nyquist Stability Criterion 

Important note:  
• To investigate the stability of system with a variable, e.g. k, using 

Nyquist stability criterion, the variable should be as a gain in the 
loop transfer function.  
 
 
 
 

• If it is not the case, the virtual loop transfer function should be 
formed. 
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Phase Margin & Gain Margin 

1. Gain Margin (GM):  
• Assume wp  is the frequency in which  

 
 
 
 
 

• The gain margin is obtained as 
 
 
 

• Or in the case of dB it is 
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wp  is called phase crossover frequency. 
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Phase Margin & Gain Margin 

2. Phase Margin (PM):  
• Assume wg  is the frequency in which                                or  

 
 
 
 
 
 
 

• The phase margin is obtained as 
 
 
 

1)( gjGH w

)(180 gjGHPM w

wg  is called gain crossover frequency. 

0)( 
dBgjGH w

Phase and gain margins are useful in minimum-phase systems. 
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Phase Margin & Gain Margin 

In a minimum-phase system to have stability both phase margin and 
gain margin in dB should be positive. i.e. 
 
 
 
and 

 
 

0)(180  gjGHPM w

Note that phase and gain margins cannot be used for stability 
analysis in non-minimum-phase systems. 

0)( 
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Phase Margin & Gain Margin in Polar 
Diagram 

1
1


OA

GM
 )](Im[ wjGH  

)](Re[ wjGH  1  

gw  

pw  

GM

1  
PM  

)( gjGH w  

0w  

w  

A  
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O  

0dBGM

0)(180  gjGHPM w

Consider a minimum-phase system with the following polar diagram 

The system is stable. 
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Phase Margin & Gain Margin in Polar 
Diagram 

 )](Im[ wjGH  

)](Re[ wjGH  1  

gw  

pw  

GM

1  
PM  

)( gjGH w  

0w  

w  
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C  
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In polar diagram of minimum-phase systems, moving from zero 
frequency to infinity frequency, if point -1 is located on the left side 
of the trajectory (from zero to infinity frequency), the system is 
stable. 

This technique cannot be used in 
non-minimum-phase systems. 
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Phase Margin & Gain Margin in Polar 
Diagram 

Example: Consider the following polar diagram of a minimum-phase 
system. Discuss on the stability if 
1) Point -1 is at point A 
2) Point -1 is at point B 
3) Point -1 is at point C 
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Phase Margin & Gain Margin in Polar 
Diagram 

Solution:  
1. A=-1     PM<0                   unstable 
2. B=-1     PM>0 & GM>0   stable 
3. C=-1     PM<0 & GM<0   unstable 
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Relative Stability using Phase Margin & 
Gain Margin 

• Comparing two stable minimum-phase systems, the one having 
higher gain margin or in the case of equal gain margins, the one 
having higher phase margin is more stable.  

• In the following examples system I is more stable. 
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Phase Margin & Gain Margin in Bode 
Diagrams 

Example: Calculate the gain and phase margins from the following 
Bode diagrams 
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Phase Margin & Gain Margin in Bode 
Diagrams 

Solution: Find the phase and gain crossover frequency (wp and wg) 
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Phase Margin & Gain Margin in Bode 
Diagrams 

Solution: Find the gain margin  
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Phase Margin & Gain Margin in Bode 
Diagrams 

Solution: Find the phase margin  
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A Few Points on Phase Margin & Gain 
Margin 

1. Gain margin of first- and second-order systems is infinity since 
Bode phase diagram never reaches -180 degrees. 

2. Non-minimum-phase system with negative phase margin and/or 
negative gain margin MAY be stable. 

3. In minimum-phase systems with several phase and/or gain 
margins, only one positive phase margin and one positive gain 
margin leads to stability. 

4. In practice for good stability PM > 45 degrees and GM > 6 dB. 
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