

Comparionato She Mloce Mlowifal

Brushless PM Machines

Design, Optimization and Analysis

Table of Contents

1. Introduction

2. Magnetic Equivalent Circuit based Modelling

3. Winding Topology

4. Two-Dimensional Analytical Modelling
5. Metaheuristic Optimization
6. Numerical Modelling
7. Linear PM Synchronous Machines

Winding Fundamental definitions

Concentrated vs. distributed winding

- Number of slots per pole per phase $N_{s p p}=\frac{N_{s}}{2 p q}$ where N_{s} is the number of slots, p is the number of pole pairs and q is the number of phases.
- If $N_{s p p} \geq 1$ the winding is distributed
- If $N_{s p p}<1$ the winding is concentrated

Winding

Fundamental definitions

Overlapping vs. non-overlapping windings

- Non-overlapping: each coil is wound around a single stator tooth.
- Alternate teeth wound (Single-layer slots)
- All teeth wound (double-layer slots)
- Overlapping: each coil spans almost a pole pitch.

Winding
 Fundamental definitions

Overlapping vs. non-overlapping windings

Advantages of non-overlapping over overlapping windings:

- Shorter end turn winding
- Easier manufacturability
- More fault tolerant, less probability of turn-to-turn short circuit fault.

Integral vs. fractional

In the case of slotted motors another classification is defined as either integral or fractional number of slots per pole per phase. Fractional slot structures reduce the cogging torque.

Winding Fundamental definitions
 Winding factors: pitch and distribution factors

- Pitch factor for the n-th harmonic is expressed as

$$
k_{p n}=\sin \left(\frac{n \pi \theta_{c}}{2 \theta_{p}}\right)=\sin \left(\frac{n \theta_{c}}{2}\right)
$$

where θ_{c} is the coil pitch and θ_{p} is the pole pitch both in electrical measures.

- Distribution factor for the n-th harmonic is represented as

$$
k_{d n}=\frac{\sin \left(\frac{n m \theta_{s}}{2}\right)}{m \sin \left(\frac{n \theta_{s}}{2}\right)}
$$

where $\theta_{s}=\frac{2 \pi p}{N_{s}}$ is the electrical angle between two adjacent slots and m is the number of slots in each phase belt.

Winding Hints

- Winding should maximize the electromagnetic torque and minimize the torque ripple.
- The number of coils must be a multiple number of phases.
- The number of slots should be a multiple number of phases for double-layer motors. In general $N_{s}=k q * 2 / N_{l}$ where q is the number of phases and N_{l} is the number of layers.
- The number of slots must be even for single-layer windings.
- The number of poles must be even.

Winding

Hints

- The number of poles cannot be equal to the number of slots.
- The phase offset in slots number should be an integer value using

$$
K_{0}=\frac{N_{s}}{q p}(1+k q) \quad k=0,1,2, \ldots, p-1
$$

- In inner rotor motors the number of poles is usually lower than the number of slots.
- In outer rotor motors, it is usual to have higher number of poles than the number of slots.
- The magnetic flux linked with each coil needs to be maximized which means the induced back-EMF is maximized.
- The phase winding should be balanced.

Winding Procedure to find 3-phase layout

1. Select the number of pole-pairs, p. It must be an integer number.
2. Select the number of layers for each slot, N_{l}. It must be an integer number, normally 1 or 2.
3. Based on the number of pole-pairs and number of layers, select a proper number of slots, N_{s}.

- Number of slots should be a multiple number of phases for doublelayer winding. In general it should be a multiple number of $q * 2 / N_{l}$.
- Number of slots should be even for single layer winding.
- The number of slots cannot be equal to the number of poles and more generally

$$
N_{s} \neq(q-1)^{k} 2 p \quad k=0,1,2, \ldots
$$

- There should be a possibility for balanced winding.

Winding Procedure to find 3-phase layout

4. Select between overlapping and non-overlapping windings.
5. Find coil pitch in slot number, S, using the following expression

$$
S= \begin{cases}1 & \text { for non-overlapping } \\ \max \left(\operatorname{floor}\left(\frac{N_{s}}{2 p}\right), 1\right) & \text { for overlapping }\end{cases}
$$

In the case of single layer windings, S should be an odd number. If the above expressions results in an even number then $S=S-1$.

Winding Procedure to find 3-phase layout

6. Calculate phase offset (the offset between two adjacent phases) in terms of slots number, K_{0} using the following expression

$$
K_{0}=\frac{N_{s}}{q p}(1+q k) \quad k=0,1,2, \ldots, p-1
$$

Normally the first integer value of K_{0} is selected as phase offset. In the case single layer winding, phase offset should be an even number; therefore the first integer even value is selected as phase offset. Note that if no integer value can be found from the above expression, it means the number of poles/slots combination is not valid for a balanced winding.

Winding Procedure to find 3-phase layout

7. Based on the coil pitch and phase offset the winding layout is presented in the following format:

Coil numbers (i)	$\mathbf{1}$	2	\ldots	\boldsymbol{i}	\ldots	$\frac{N_{s} N_{l}}{2}$
Coil angles $\left(\theta_{i}^{\text {coil }}\right.$)	0	$\frac{2 \theta_{s}}{N_{l}}$	\ldots	$\frac{2 \theta_{s}}{N_{l}}(i-1)$	\ldots	$\theta_{s}\left(N_{s}-\frac{2}{N_{l}}\right)$
In-slot ($N_{i}^{\text {in }}$)	1	$1+\frac{2}{N_{l}}$	\ldots	$1+\frac{2}{N_{l}}(i-1)$	\ldots	$1+N_{s}-\frac{2}{N_{l}}$
Out-slot $\left(N_{i}^{\text {out }}\right)$	$1+S$	$1+\frac{2}{N_{l}}+S$	\ldots	$N_{i}^{\text {in }}+S$	\ldots	$1+N_{s}-\frac{2}{N_{l}}+S$

where $\theta_{s}=360 \mathrm{p} / N_{s}$ is the slot pitch angle in electrical degrees.

Winding Procedure to find 3-phase layout

8. Modify winding layout table by bringing the coil angles in the range of -180 and 180 and the out-slot between 1 and N_{s} :

$$
\begin{gathered}
\theta_{i}^{\text {coil }}=\operatorname{rem}\left(\theta_{i}^{\text {coil }}+180,360\right)-180 \\
N_{i}^{\text {out }}=\operatorname{rem}\left(N_{i}^{\text {out }}, N_{s}\right)
\end{gathered}
$$

where rem is the remainder function. If $N_{i}^{\text {out }}$ is zero after applying the remainder function, the zero should be replaced by N_{s}.

Winding Procedure to find 3-phase layout

9. For those coils where their coil angles are greater than 90 degrees or less than -90 degrees, the coil direction is reversed (swap $N_{i}^{\text {in }}$ and $N_{i}^{\text {out }}$) and the coil angles are added by -180 or 180 respectively. By this step, the coil angles are brought within -90 and 90 degrees.

$$
\begin{array}{r}
\left\{\begin{array}{lll}
N_{i}^{\text {in }} \leftrightarrow N_{i}^{\text {out }} & \text { if } & \theta_{i}^{\text {coil }}>90 \\
N_{i}^{\text {in }} \leftrightarrow N_{i}^{\text {out }} & \text { if } & \theta_{i}^{\text {coil }}<-90
\end{array}\right. \\
\theta_{i}^{\text {coil }}=\left\{\begin{array}{lll}
\theta_{i}^{\text {coil }}-180 & \text { if } & \theta_{i}^{\text {coil }}>90 \\
\theta_{i}^{\text {coil }}+180 & \text { if } & \theta_{i}^{\text {coil }}<-90
\end{array}\right.
\end{array}
$$

Winding Procedure to find 3-phase layout

10. Find out each coil is related to which phase. To do so, the coils with coil angles closest to 0 with minimum total spread will be selected for the first phase. For each coil from first phase there is a corresponding coil for the next phase using the phase offset. This process will be repeated to find the coils of all phases.

Winding Example 1

Assume a 3-phase machine with

1. Four poles (2-pole-pair)
2. Double layer slots
3. 15 slots
4. Overlapping winding.
$q=3$
$p=2$
$N_{l}=2$
$N_{s}=15$

Winding Example 1

5. Coil pitch calculation

$$
S=\max \left(\text { floor }\left(\frac{N_{s}}{2 p}\right), 1\right)=\max \left(\text { floor }\left(\frac{15}{4}\right), 1\right)=3
$$

6. Phase offset calculation

$$
\begin{aligned}
K_{0} & =\frac{N_{s}}{q p}(1+q k) \quad k=0,1,2, \ldots, p-1 \\
& =\frac{15}{3 \times 2}(1+3 k) \\
& =10 \quad \text { for } \quad k=1
\end{aligned}
$$

Winding Example 1

7. Winding layout

Coil Numbers	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Coil angles	0	48	96	144	192	240	288	336	384	432	480	528	576	624	672
In-slot coil	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Out-slot coil	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Coil angles: $\frac{2 \theta_{s}}{N_{l}}(i-1) \quad \operatorname{In}$-slot: $1+\frac{2}{N_{l}}(i-1) \quad$ Out-slot: $N_{i}^{\text {in }}+S$
where $\quad \theta_{s}=360 p / N_{s}=48, \quad N_{l}=2, \quad S=3$

Winding Example 1

8. Modifying winding layout

Coil Numbers	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Coil angles	0	48	96	144	-168	-120	-72	-24	24	72	120	168	-144	-96	-48
In-slot coil	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Out-slot coil	4	5	6	7	8	9	10	11	12	13	14	15	1	2	3

$$
\begin{gathered}
\theta_{i}^{\text {coil }}=\operatorname{rem}\left(\theta_{i}^{\text {coil }}+180,360\right)-180 \\
N_{i}^{\text {out }}=\operatorname{rem}\left(N_{i}^{\text {out }}, N_{s}\right)
\end{gathered}
$$

Winding Example 1

9. Modifying winding layout

Coil Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Coil angles	0	48	-84	-36	12	60	-72	-24	24	72	-60	-12	36	84	-48
In-slot coil	1	2	6	7	8	9	7	8	9	10	14	15	1	2	15
Out-slot coil	4	5	3	4	5	6	10	11	12	13	11	12	13	14	3

$$
\theta_{i}^{\text {coil }}=\left\{\begin{array}{lllll}
\theta_{i}^{\text {coil }}-180 & \& & N_{i}^{\text {in }} \leftrightarrow N_{i}^{\text {out }} & \text { if } & \theta_{i}^{\text {coil }}>90 \\
\theta_{i}^{\text {coil }}+180 & \& & N_{i}^{\text {in }} \leftrightarrow N_{i}^{\text {out }} & \text { if } & \theta_{i}^{\text {coil }}<-90
\end{array}\right.
$$

Winding Example 1

10. Find out the coils of each phase (5 coils per phase)

Coil Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Coil angles	0	48	-84	-36	12	60	-72	-24	24	72	-60	-12	36	84	-48
In-slot coil	1	2	6	7	8	9	7	8	9	10	14	15	1	2	15
Out-slot coil	4	5	3	4	5	6	10	11	12	13	11	12	13	14	3
Phase	A1	C3	B5	B4	A2	C1	B3	A5	A4	C2	B1	A3	C5	C4	B2

Slots	Phase A	Phase B	Phase C
1	In		Out
2			Out \& Out
3		ln \& ln	
4	Out	In	
5	Out		In
6		Out	In
7		Out \& Out	
8	\ln \& In		
9	In		Out
10		In	Out
11	Out	In	
12	Out \& Out		
13			In \& ln
14		Out	In
15	In	Out	

Winding Example 1

Plot the winding topology

Winding

Valid pole/slot combinations for 2-phase machines

Slots	8	12	16	20	24	28	32	36	40	44	48
Poles	2	2	2	2	2	2	2	2	2	2	2
	6	10	4	6	4	6	4	6	4	6	4
			6	14	6	10	6	10	6	10	6
			10		10	18	8	14	10	14	8
		12		18	22	10	22	12	18	10	
		14		20		12	26	14		12	
						14	30	26		14	
							20		28		18
							22		30		20
							24		34		30
						26				34	
							28				36
											38
										40	

Winding

Valid pole/slot combinations for 3-phase machines

Slots	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48
Poles	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
			6	8	10	6	8	8	6	8	8	6	8	8	6	8
			8	10		8	14	10	8	10	10	8	10	10	8	10
			12	18		12	16	16	10	20	14	10	14	14	10	14
						14		20	12	22	20	12	16	16	12	16
						16			18	26	22	14	26	26	14	20
									20		26	16	28	32	16	32
									22		28	22	32	34	20	34
									24			24	34		28	38
												26			30	40
												28			32	
												30			34	
												32			38	
															40	

Winding

Valid pole/slot combinations for 4-phase machines

Slots	8	16	24	32	40	48
Poles	2	2	2	2	2	2
	4	4	6	4	6	4
		6	10	6	10	6
		10	18	8	14	10
		12		10	26	12
		14		12	30	14
				14	34	18
				20		20
				22		30
				24		334
				28		36
						38

Winding

Valid pole/slot combinations for 5-phase machines

Slots	5	10	15	20	25	30	35	40	45
Poles	2	2	2	2	2	2	2	2	2
	4	4	4	4	4	4	4	4	4
		6	6	6	6	6	6	6	6
		8	12	8	8	8	8	8	8
				12	10	12	12	12	12
				14	16	18	14	14	14
				16	18	22	22	16	16
					20	24	24	24	18
					22	26	26	26	28
						28	28	32	
								32	34

Winding

Valid pole/slot combinations for 6-phase machines

Slots	12	24	36
Poles	2	2	2
	10	4	6
		10	10
		20	14
			22
			26
			30

Permitted Current Density

Permitted RMS values for current densities J and linear current densities A for various electrical machines. Depending on the size of a permanent magnet machine, a synchronous machine, an asynchronous machine or a DC machine, suitably selected values can be used. Copper windings are generally assumed

	Asynchronous machines	Sailent-pole synchronous machines or PMSMs	Nonsalient-pole synchronous machines			DC machines
			Indirect cooling		Direct water cooling	
			Air	Hydrogen		
$A / \mathrm{kA} / \mathrm{m}$	30-65	35-65	30-80	90-110	150-200	25-65
	Stator winding	Armature winding		Armature winding		Armature winding
$J / \mathrm{A} / \mathrm{mm}^{2}$	3-8	4-6.5	3-5	4-6	7-10	4-9
	Copper rotor winding	Field winding:				Pole winding
$\mathrm{J} / \mathrm{A} / \mathrm{mm}^{2}$	3-8	2-3.5				2-5.5
	Aluminium rotor winding	Multi-layer		Field winding		Compensating winding
$J / \mathrm{A} / \mathrm{mm}^{2}$	3-6.5	2-4	3-5	3-5	6-12	3-4
		Single-layer	With direct water cooling, in field windings $13-18 \mathrm{~A} / \mathrm{mm}^{2}$ and $250-300 \mathrm{kA} / \mathrm{m}$ can be reached			

