

Compassionate, The Most Merciful

Brushless PM Machines

Design, Optimization and Analysis

Table of Contents

1. Introduction

2. Magnetic Equivalent Circuit based Modelling

3. Winding Topology

4. Two-Dimensional Analytical Modelling

5. Metaheuristic Optimization

6. Numerical Modelling

7. Linear PM Synchronous Machines

Fundamental definitions

Concentrated vs. distributed winding

• Number of slots per pole per phase $N_{spp} = \frac{N_s}{2pq}$

where N_s is the number of slots, p is the number of pole pairs and q is the number of phases.

- If $N_{spp} \ge 1$ the winding is **distributed**
- If $N_{spp} < 1$ the winding is **concentrated**

Fundamental definitions

Overlapping vs. non-overlapping windings

- Non-overlapping: each coil is wound around a single stator tooth.
 - Alternate teeth wound (Single-layer slots)
 (a)
 - All teeth wound (double-layer slots)
- **Overlapping**: each coil spans almost a pole pitch.

(b)

(c)

Winding Fundamental definitions

Overlapping vs. non-overlapping windings

Advantages of non-overlapping over overlapping windings:

- Shorter end turn winding
- Easier manufacturability
- More **fault tolerant**, less probability of turn-to-turn short circuit fault.

Integral vs. fractional

In the case of slotted motors another classification is defined as either *integral* or *fractional* number of slots per pole per phase. Fractional slot structures reduce the cogging torque.

Winding Fundamental definitions Winding factors: pitch and distribution factors

• **Pitch factor** for the *n*-th harmonic is expressed as

$$k_{pn} = \sin\left(\frac{n\pi\theta_c}{2\theta_p}\right) = \sin\left(\frac{n\theta_c}{2}\right)$$

where θ_c is the coil pitch and θ_p is the pole pitch both in electrical measures.

• **Distribution factor** for the *n*-th harmonic is represented as $k_{dn} = \frac{\sin\left(\frac{nm\theta_s}{2}\right)}{m\sin\left(\frac{n\theta_s}{2}\right)}$

where $\theta_s = \frac{2\pi p}{N_s}$ is the electrical angle between two adjacent slots and *m* is the number of slots in each phase belt.

Winding Hints

- Winding should maximize the electromagnetic torque and minimize the torque ripple.
- The number of coils must be a multiple number of phases.
- The number of slots should be a multiple number of phases for double-layer motors. In general $N_s = kq * 2/N_l$ where q is the number of phases and N_l is the number of layers.
- The number of slots must be even for single-layer windings.
- The **number of poles** must be **even**.

Winding Hints

- The number of poles cannot be equal to the number of slots.
- The *phase offset* in slots number should be an integer value using $K_0 = \frac{N_s}{(1+kq)} \qquad k = 0, 1, 2, ..., p-1$

- In outer rotor motors, it is usual to have higher number of poles than the number of slots.
- The magnetic flux linked with each coil needs to be maximized which means the induced back-EMF is maximized.
- The **phase winding** should be **balanced**.

- 1. Select the **number of pole-pairs**, *p*. It must be an integer number.
- 2. Select the **number of layers** for each slot, N_l . It must be an integer number, normally 1 or 2.
- 3. Based on the number of pole-pairs and number of layers, select a proper number of slots, N_s .
 - Number of slots should be a multiple number of phases for doublelayer winding. In general it should be a multiple number of $q*2/N_l$.
 - Number of slots should be even for single layer winding.
 - The number of slots cannot be equal to the number of poles and more generally

$$N_s \neq (q-1)^k 2p$$
 $k = 0, 1, 2, ...$

- There should be a possibility for **balanced** winding.

- 4. Select between overlapping and non-overlapping windings.
- 5. Find **coil pitch** in slot number, *S*, using the following expression

 $S = \begin{cases} 1 & \text{for non-overlapping} \\ \max\left(\text{floor}\left(\frac{N_s}{2p}\right), 1\right) & \text{for overlapping} \end{cases}$

In the case of **single layer** windings, *S* should be an **odd** number. If the above expressions results in an even number then S=S-1.

Calculate phase offset (the offset between two adjacent phases) in terms of slots number, K₀ using the following expression

$$K_0 = \frac{N_s}{qp} (1 + qk)$$
 $k = 0, 1, 2, ..., p-1$

Normally the **first integer value** of K_0 is selected as phase offset. In the case **single layer** winding, phase offset should be an **even** number; therefore the first integer even value is selected as phase offset. Note that if **no integer value** can be found from the above expression, it means the number of **poles/slots** combination is not **valid** for a balanced winding.

7. Based on the coil pitch and phase offset the **winding layout** is presented in the following format:

Coil numbers (<i>i</i>)	1	2	• • •	i	•••	$\frac{N_s N_l}{2}$
Coil angles ($ heta_i^{ coil}$)	0	$rac{2 heta_s}{N_l}$	• • •	$\frac{2\theta_s}{N_l}(i-1)$	• • •	$\theta_{s}\left(N_{s}-\frac{2}{N_{l}}\right)$
In-slot (N_i^{in})	1	$1 + \frac{2}{N_l}$	•••	$1 + \frac{2}{N_l}(i-1)$	• • •	$1 + N_s - \frac{2}{N_l}$
Out-slot (N_i^{out})	1+ <i>S</i>	$1 + \frac{2}{N_l} + S$	•••	$N_i^{in} + S$	• • •	$1 + N_s - \frac{2}{N_l} + S$

where $\theta_s = 360 p/N_s$ is the slot pitch angle in electrical degrees.

8. Modify winding layout table by bringing the coil angles in the range of -180 and 180 and the out-slot between 1 and N_s :

 $\theta_i^{coil} = rem(\theta_i^{coil} + 180,360) - 180$

$$N_i^{out} = rem(N_i^{out}, N_s)$$

where *rem* is the remainder function. If N_i^{out} is zero after applying the remainder function, the zero should be replaced by N_s .

For those coils where their coil angles are greater than 90 degrees or less than -90 degrees, the coil direction is reversed (swap N_iⁱⁿ and N_i^{out}) and the coil angles are added by -180 or 180 respectively. By this step, the coil angles are brought within -90 and 90 degrees.

$$\begin{cases} N_i^{in} \leftrightarrow N_i^{out} & \text{if} \quad \theta_i^{coil} > 90\\ N_i^{in} \leftrightarrow N_i^{out} & \text{if} \quad \theta_i^{coil} < -90 \end{cases}$$
$$\theta_i^{coil} = \begin{cases} \theta_i^{coil} - 180 & \text{if} \quad \theta_i^{coil} > 90\\ \theta_i^{coil} + 180 & \text{if} \quad \theta_i^{coil} > 90 \end{cases}$$

10. Find out each coil is related to which phase. To do so, the coils with coil angles closest to 0 with minimum total spread will be selected for the first phase. For each coil from first phase there is a corresponding coil for the next phase using the phase offset. This process will be repeated to find the coils of all phases.

- 1. Four poles (2-pole-pair)
- 2. Double layer slots
- 3. 15 slots
- 4. Overlapping winding.

q = 3

p = 2

- $N_{l} = 2$
- $N_{s} = 15$

$$N_{spp} = \frac{N_s}{2qp} = 1.25 \ge 1 \implies \text{Distributed}$$

5. Coil pitch calculation

$$S = \max\left(\operatorname{floor}\left(\frac{N_s}{2p}\right), 1\right) = \max\left(\operatorname{floor}\left(\frac{15}{4}\right), 1\right) = 3$$

6. Phase offset calculation

$$K_{0} = \frac{N_{s}}{qp} (1 + qk) \qquad k = 0, 1, 2, ..., p-1$$
$$= \frac{15}{3 \times 2} (1 + 3k)$$
$$= 10 \qquad for \quad k = 1$$

17

Dr. A. Rahideh

7. Winding layout

	Coil Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Coil angles	0	48	96	144	192	240	288	336	384	432	480	528	576	624	672
	In-slot coil	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Out-slot coil	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C	oil angl	es:	$\frac{2\theta_s}{N_l}(i$	-1)		In-slc	ot: 1+	$\frac{2}{N_l}(i -$	-1)	C	Dut-s	lot:	N_i^{in} +	S		
۷	here	$\theta_s =$	= 360	p/N_s	$_{s} = 48$,	$N_l =$	2,	S	=3						18

Shiraz University of Technology

8. Modifying winding layout

Coil Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Coil angles	0	48	96	144	-168	-120	-72	-24	24	72	120	168	-144	-96	-48
In-slot coil	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Out-slot coil	4	5	6	7	8	9	10	11	12	13	14	15	1	2	3

$$\theta_i^{coil} = rem(\theta_i^{coil} + 180,360) - 180$$

$$N_i^{out} = rem(N_i^{out}, N_s)$$

19

Shiraz University of Technology

Dr. A. Rahideh

9. Modifying winding layout

Coil Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Coil angles	0	48	-84	-36	12	60	-72	-24	24	72	-60	-12	36	84	-48
In-slot coil	1	2	6	7	8	9	7	8	9	10	14	15	1	2	15
Out-slot coil	4	5	3	4	5	6	10	11	12	13	11	12	13	14	3

 $\theta_i^{coil} = \begin{cases} \theta_i^{coil} - 180 & \& & N_i^{in} \leftrightarrow N_i^{out} & if & \theta_i^{coil} > 90 \\ \theta_i^{coil} + 180 & \& & N_i^{in} \leftrightarrow N_i^{out} & if & \theta_i^{coil} < -90 \end{cases}$

Shiraz University of Technology

10. Find out the coils of each phase (5 coils per phase)

Coil Numbers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Coil angles	0	48	-84	-36	12	60	-72	-24	24	72	-60	-12	36	84	-48
In-slot coil	1	2	6	7	8	9	7	8	9	10	14	15	1	2	15
Out-slot coil	4	5	3	4	5	6	10	11	12	13	11	12	13	14	3
Phase	A1	С3	B5	B4	A2	C1	B3	A5	A4	C2	B1	A3	С5	C4	B2

Slots	Phase A	Phase B	Phase C
1	In		Out
2			Out & Out
3		In & In	
4	Out	In	
5	Out		In
6		Out	In
7		Out & Out	
8	In & In		
9	In		Out
10		In	Out
11	Out	In	
12	Out & Out		
13			In & In
14		Out	In
15	In	Out	

Winding Example 1 Plot the winding topology

Valid pole/slot combinations for 2-phase machines

Slots	8	12	16	20	24	28	32	36	40	44	48
Poles	2	2	2	2	2	2	2	2	2	2	2
	6	10	4	6	4	6	4	6	4	6	4
			6	14	6	10	6	10	6	10	6
			10		10	18	8	14	10	14	8
			12		18	22	10	22	12	18	10
			14		20		12	26	14		12
							14	30	26		14
							20		28		18
							22		30		20
							24		34		30
							26				34
							28				36
											38
											40
											42

Valid pole/slot combinations for **3-phase** machines

Slots	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48
Poles	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
			6	8	10	6	8	8	6	8	8	6	8	8	6	8
			8	10		8	14	10	8	10	10	8	10	10	8	10
			12	18		12	16	16	10	20	14	10	14	14	10	14
						14		20	12	22	20	12	16	16	12	16
						16			18	26	22	14	26	26	14	20
									20		26	16	28	32	16	32
									22		28	22	32	34	20	34
									24			24	34		28	38
												26			30	40
												28			32	
												30			34	
												32			38	
															40	

Valid pole/slot combinations for **4-phase** machines

Slots	8	16	24	32	40	48
Poles	2	2	2	2	2	2
	4	4	6	4	6	4
		6	10	6	10	6
		10	18	8	14	10
		12		10	26	12
		14		12	30	14
				14	34	18
				20		20
				22		30
				24		334
				26		36
				28		38
						40

Valid pole/slot combinations for **5-phase** machines

Slots	5	10	15	20	25	30	35	40	45
Poles	2	2	2	2	2	2	2	2	2
	4	4	4	4	4	4	4	4	4
		6	6	6	6	6	6	6	6
		8	12	8	8	8	8	8	8
				12	10	12	12	12	12
				14	16	18	14	14	14
				16	18	22	22	16	16
					20	24	24	24	18
					22	26	26	26	28
							28	28	32
								32	34
								34	36

Valid pole/slot combinations for 6-phase machines

Slots	12	24	36
Poles	2	2	2
	10	4	6
		10	10
		20	14
			22
			26
			30

Permitted Current Density

Permitted RMS values for current densities *J* and linear current densities *A* for various electrical machines. Depending on the size of a permanent magnet machine, a synchronous machine, an asynchronous machine or a DC machine, suitably selected values can be used. Copper windings are generally assumed

		Sailent-pole	Nonsalient-	pole synchrono	ous machines	
	Asynchronous	synchronous machines	Indirect	t cooling	Direct water	
	machines	or PMSMs	Air	Hydrogen	cooling	DC machines
A/kA/m	30–65	35-65	30-80	90–110	150-200	25-65
	Stator winding	Armature winding		Armature winding		Armature winding
$J/A/mm^2$	3–8	4-6.5	3–5	4–6	7-10	4–9
	Copper rotor winding	Field winding:				Pole winding
$J/A/mm^2$	3-8	2-3.5				2-5.5
	Aluminium rotor winding	Multi-layer		Field winding		Compensating winding
$J/A/mm^2$	3-6.5	2–4	3–5	3-5	6-12	3–4
		Single-layer	windings 1	vater cooling, i 3–18 A/mm² a A/m can be rea	and	