

Compassionate, The Most Merciful

General Theory of Electric Machines

Table of Contents 1. Introduction 2. Transformers 3. **Reference-Frame Theory**

4. Induction Machines

5. Synchronous Machines

Chapter 3 Reference-Frame Theory

3.1. Introduction

3.2. Fortescue's Transformation

3.3. Clarke's Transformation

3.4. Concordia's Transformation

3.5. Park's Transformation

Dr. A. Rahideh

Introduction

Some of the applications of the Mathematical Transformations are as follows:

1. To **decouple variables**;

2. To **facilitate the solution** of differential equations with timevarying coefficients;

3. To **refer all variables** to a common reference frame.

Fortescue's Transformation

- This transformation is known as the method of symmetrical components and developed by Fortescue.
- This transformation states that *N* unbalanced phasors can be represented by *N* systems of *N* balanced phasors.
- It uses a complex transformation to decouple the *abc* phase variables.
- The method of symmetrical components is used to simplify analysis of unbalanced three phase power systems under both normal and abnormal conditions.
- It is used to decouple an unbalanced three-phase network into three simpler sequence (zero, positive and negative) networks.

Fortescue's Transformation

$$\begin{bmatrix} \mathbf{f}_{012} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{012} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{f}_{012} \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{abc} \end{bmatrix} = \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

 Variable f may be the currents, voltages or fluxes and the transformation and its inverse are given by

$$\begin{bmatrix} \mathbf{T}_{012} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} \mathbf{T}_{012} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \text{ where } \begin{bmatrix} a = e^{j\frac{2\pi}{3}} \\ a = e^{j\frac{2\pi}{3}} \end{bmatrix}$$

- As shown below, the α -axis coincides with the phase a-axis and the β -axis leads the α -axis by $\pi/2$.
- A third variable known as the zero-sequence component is also included.
- Clarke's transformation is not power-invariant (i.e. the values of power before and after the transformation are not the same.

• Clarke's transformation is expressed as follows

$$\begin{bmatrix} \mathbf{f}_{\alpha\beta0} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\alpha\beta0} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{f}_{\alpha\beta0} \end{bmatrix} = \begin{bmatrix} f_{\alpha} \\ f_{\beta} \\ f_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\alpha\beta0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{f}_{\alpha\beta0} \end{bmatrix}$$

• Similarly variable f may be the currents, voltages or fluxes and the transformation and its inverse are given by

$$\begin{bmatrix} \mathbf{T}_{\alpha\beta0} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{T}_{\alpha\beta0} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 1 \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 1 \end{bmatrix}$$

Concordia's Transformation

- Concordia's transformation is **similar** to Clarke's transformation.
- The only difference is that Concordia's transformation is powerinvariant (i.e. the values of power before and after the transformation are identical.
- To have the power-invariant property, the transformation matrix must be orthogonal.
- A matrix is orthogonal if its **inverse** and its **transpose** are the same, i.e.
- **M** is orthogonal if $\mathbf{M}^{-1} = \mathbf{M}^{T}$

Concordia's Transformation

$$\begin{bmatrix} \mathbf{f}_{\alpha\beta0} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\alpha\beta0} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\alpha\beta0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{f}_{\alpha\beta0} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix} = \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

• The transformation and its inverse are given by

Power-Invariant Property

Example: Consider a balanced 3-phase system with ohmic load. Show that:

- 1. Clarke's transformation is not power-invariant,
- 2. Concordia's transformation is power-invariant.

$$\begin{cases} v_a = V_m \cos(\omega t) \\ v_b = V_m \cos(\omega t - 2\pi/3) \\ v_c = V_m \cos(\omega t - 4\pi/3) \end{cases}$$

$$\begin{cases} i_a = I_m \cos(\omega t) \\ i_b = I_m \cos(\omega t - 2\pi/3) \\ i_c = I_m \cos(\omega t - 4\pi/3) \end{cases}$$

Power-Invariant Property

Example: Part 1) Clarke's transformation is not power-invariant,

• Using the 3-phase expressions at $\omega t = 0$

• Using Clarke's transformation at $\omega t = 0$

Therefore not power-invariant

Power-Invariant Property

Example: Part 2) Concordia's transformation is power-invariant,

• Using the 3-phase expressions at $\omega t = 0$

n-phase to 2-phase Transformation

- Another commonly-used transformation is the polyphase to orthogonal two-phase transformation.
- For the *n*-phase to two-phase case, it is expressed as

$$\left[\mathbf{f}_{xy}\right] = \left[\mathbf{T}(\boldsymbol{\theta})\right] \left[\mathbf{f}_{123...n}\right]$$

where

$$[\mathbf{T}(\theta)] = \sqrt{\frac{2}{n}} \begin{bmatrix} \cos\theta & \cos(\theta - \alpha) & \cdots & \cos(\theta - (n-1)\alpha) \\ \sin\theta & \sin(\theta - \alpha) & \cdots & \sin(\theta - (n-1)\alpha) \end{bmatrix}$$

and α is the *electrical* angle between adjacent magnetic axes of the uniformly distributed *n*-phase winding. The coefficient $\sqrt{2/n}$ is to make the transformation **power-invariant**.

- Park's transformation is a well-known 3-phase to 2-phase transformation in synchronous machine analysis.
- Three different cases are introduced:
 - Case 1: The q-axis is **leading** the d-axis by 90 electrical degrees; and the angle between the **d-axis** w.r.t. the *a*-axis is used.
 - Case 2: The q-axis is **lagging** the d-axis by 90 electrical degrees; and the angle between the **d-axis** w.r.t. the *a*-axis is used.
 - Case 3: The q-axis is **leading** the d-axis by 90 electrical degrees; and the angle between the **q-axis** w.r.t. the *a*-axis is used.

enerator Notation

16

Case 1: The q-axis is **leading** the d-axis by 90 electrical degrees; and the angle between the **d-axis** w.r.t. the *a*-axis is used.

• The case 1 of Park's transformation is expressed as:

$$\left[\mathbf{f}_{dq0}\right] = \left[\mathbf{T}_{dq0}(\boldsymbol{\theta}_{d})\right] \left[\mathbf{f}_{abc}\right]$$

$$\begin{bmatrix} \mathbf{f}_{dq0} \end{bmatrix} = \begin{bmatrix} f_d \\ f_q \\ f_0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix} = \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

where

$$\begin{bmatrix} \mathbf{T}_{dq0}(\theta_d) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos \theta_d & \cos \left(\theta_d - 2\pi/3 \right) & \cos \left(\theta_d + 2\pi/3 \right) \\ -\sin \theta_d & -\sin \left(\theta_d - 2\pi/3 \right) & -\sin \left(\theta_d + 2\pi/3 \right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\theta_d = \omega t + \theta_0$$

• The case 1 of inverse Park's transformation is expressed as:

$$\left[\mathbf{f}_{abc}\right] = \left[\mathbf{T}_{dq0}(\boldsymbol{\theta}_{d})\right]^{-1} \left[\mathbf{f}_{dqo}\right]$$

$$\begin{bmatrix} \mathbf{f}_{dq0} \end{bmatrix} = \begin{bmatrix} f_d \\ f_q \\ f_0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix} = \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

where

$$\begin{bmatrix} \mathbf{T}_{dq0}(\theta_d) \end{bmatrix}^{-1} = \begin{bmatrix} \cos\theta_d & -\sin\theta_d & 1\\ \cos(\theta_d - 2\pi/3) & -\sin(\theta_d - 2\pi/3) & 1\\ \cos(\theta_d + 2\pi/3) & -\sin(\theta_d + 2\pi/3) & 1 \end{bmatrix}$$

 $\theta_d = \omega t + \theta_0$

Case 2: The q-axis is **lagging** the d-axis by 90 electrical degrees; and the angle between the **d-axis** w.r.t. the *a*-axis is used.

• The case 2 of Park's transformation is expressed as:

$$\left[\mathbf{f}_{dq0}\right] = \left[\mathbf{T}_{dq0}(\boldsymbol{\theta}_{d})\right] \left[\mathbf{f}_{abc}\right]$$

$$\begin{bmatrix} \mathbf{f}_{dq0} \end{bmatrix} = \begin{bmatrix} f_d \\ f_q \\ f_0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix} = \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

where

$$\begin{bmatrix} \mathbf{T}_{dq0}(\theta_d) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos \theta_d & \cos \left(\theta_d - 2\pi/3 \right) & \cos \left(\theta_d + 2\pi/3 \right) \\ \sin \theta_d & \sin \left(\theta_d - 2\pi/3 \right) & \sin \left(\theta_d + 2\pi/3 \right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\theta_d = \omega t + \theta_0$$

• The case 2 of inverse Park's transformation is expressed as:

$$\left[\mathbf{f}_{abc}\right] = \left[\mathbf{T}_{dq0}(\boldsymbol{\theta}_{d})\right]^{-1} \left[\mathbf{f}_{dqo}\right]$$

$$\begin{bmatrix} \mathbf{f}_{dq0} \end{bmatrix} = \begin{bmatrix} f_d \\ f_q \\ f_0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix} = \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

where

$$\begin{bmatrix} \mathbf{T}_{dq0}(\theta_d) \end{bmatrix}^{-1} = \begin{bmatrix} \cos \theta_d & \sin \theta_d & 1 \\ \cos \left(\theta_d - 2\pi/3 \right) & \sin \left(\theta_d - 2\pi/3 \right) & 1 \\ \cos \left(\theta_d + 2\pi/3 \right) & \sin \left(\theta_d + 2\pi/3 \right) & 1 \end{bmatrix}$$

 $\theta_d = \omega t + \theta_0$

Case 3: The q-axis is **leading** the d-axis by 90 electrical degrees; and the angle between the **q-axis** w.r.t. the *a*-axis is used.

Motor Notation

• The case 3 of Park's transformation is expressed as:

$$\left[\mathbf{f}_{qd0}\right] = \left[\mathbf{T}_{qd0}(\boldsymbol{\theta}_{q})\right] \left[\mathbf{f}_{abc}\right]$$

$$\begin{bmatrix} \mathbf{f}_{qd0} \end{bmatrix} = \begin{bmatrix} f_q \\ f_d \\ f_0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix} = \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

where

Dr. A. Rahideh

• The case 3 of inverse Park's transformation is expressed as:

$$\left[\mathbf{f}_{abc}\right] = \left[\mathbf{T}_{qd0}(\boldsymbol{\theta}_{q})\right]^{-1} \left[\mathbf{f}_{qd0}\right]$$

$$\begin{bmatrix} \mathbf{f}_{qd\,0} \end{bmatrix} = \begin{bmatrix} f_q \\ f_d \\ f_0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}_{abc} \end{bmatrix} = \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

where

$$\begin{bmatrix} \mathbf{T}_{qd0}(\theta_q) \end{bmatrix}^{-1} = \begin{bmatrix} \cos \theta_q & \sin \theta_q & 1 \\ \cos \left(\theta_q - 2\pi/3 \right) & \sin \left(\theta_q - 2\pi/3 \right) & 1 \\ \cos \left(\theta_q + 2\pi/3 \right) & \sin \left(\theta_q + 2\pi/3 \right) & 1 \end{bmatrix}$$

$$\theta_q = \omega t + \theta_0'$$

$$\theta_q = \theta_d + \frac{\pi}{2}$$

 \sim

24

Dr. A. Rahideh

Park's Transformation on a 3-phase Sinusoidal System

• Consider the following 3-phase voltage:

$$\begin{bmatrix} \mathbf{v}_{abc} \end{bmatrix} = \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \begin{bmatrix} V_m \cos(\omega t) \\ V_m \cos(\omega t - 2\pi/3) \\ V_m \cos(\omega t - 4\pi/3) \end{bmatrix}$$

• The aim is to find the case 3 of Park's transformation.

$$\begin{bmatrix} \mathbf{v}_{qd0} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{qd0}(\theta_q) \end{bmatrix} \begin{bmatrix} \mathbf{v}_{abc} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{T}_{qd0}(\theta_q) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos \theta_q & \cos \left(\theta_q - 2\pi/3 \right) & \cos \left(\theta_q + 2\pi/3 \right) \\ \sin \theta_q & \sin \left(\theta_q - 2\pi/3 \right) & \sin \left(\theta_q + 2\pi/3 \right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Park's Transformation on a 3-phase Sinusoidal System

• Therefore

$$\begin{bmatrix} \mathbf{v}_{qd0} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos \theta_q & \cos \left(\theta_q - 2\pi/3 \right) & \cos \left(\theta_q + 2\pi/3 \right) \\ \sin \theta_q & \sin \left(\theta_q - 2\pi/3 \right) & \sin \left(\theta_q + 2\pi/3 \right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} V_m \cos \left(\omega t - 2\pi/3 \right) \\ V_m \cos \left(\omega t - 4\pi/3 \right) \end{bmatrix}$$

• Which yields

$$\begin{bmatrix} \mathbf{v}_{qd0} \end{bmatrix} = V_m \begin{bmatrix} \cos(\theta_q - \omega t) \\ \sin(\theta_q - \omega t) \\ 0 \end{bmatrix} \xrightarrow{\theta_q = \omega t + \theta'_0} \begin{bmatrix} \mathbf{v}_{qd0} \end{bmatrix} = V_m \begin{bmatrix} \cos \theta'_0 \\ \sin \theta'_0 \\ 0 \end{bmatrix}$$

Power Transfer of Park's Transformation

• The power in *abc* reference frame is expressed as

 $P_{abc} = [\mathbf{v}_{abc}]^T [\mathbf{i}_{abc}] \quad \text{where} \quad \begin{bmatrix} \mathbf{v}_a \\ \mathbf{v}_b \\ \mathbf{v}_c \end{bmatrix} = \begin{bmatrix} \mathbf{v}_a \\ \mathbf{v}_b \\ \mathbf{v}_c \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{i}_{abc} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_a \\ \mathbf{i}_b \\ \mathbf{i}_c \end{bmatrix}$

Using inverse Park's transformation on the voltage and current yields:

$$\left[\mathbf{v}_{abc}\right] = \left[\mathbf{T}_{qd0}\right]^{-1} \left[\mathbf{v}_{qd0}\right]$$

$$P_{abc} = \left(\left[\mathbf{T}_{qd0} \right]^{-1} \left[\mathbf{v}_{qd0} \right] \right)^T \left(\left[\mathbf{T}_{qd0} \right]^{-1} \left[\mathbf{i}_{qd0} \right] \right)$$

Power Transfer of Park's Transformation

$$P_{abc} = \left(\left[\mathbf{T}_{qd0} \right]^{-1} \left[\mathbf{v}_{qd0} \right] \right)^T \left(\left[\mathbf{T}_{qd0} \right]^{-1} \left[\mathbf{i}_{qd0} \right] \right)$$
$$\longrightarrow P_{abc} = \left[\mathbf{v}_{qd0} \right]^T \left(\left[\mathbf{T}_{qd0} \right]^{-1} \right)^T \left[\mathbf{T}_{qd0} \right]^{-1} \left[\mathbf{i}_{qd0} \right]$$

• Using the inverse transformation matrix and its transpose we have:

$$\left(\begin{bmatrix} \mathbf{T}_{qd0} \end{bmatrix}^{-1} \right)^{T} \begin{bmatrix} \mathbf{T}_{qd0} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{3}{2} & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 3 \end{bmatrix} \longrightarrow P_{abc} \neq P_{qd0}$$

- Therefore Park's transformation is not power-invariant.
- To have power-invariant property the above matrix should be identity.

Generalized Park's Transformation

• The rotational velocity of the d-q frame can be **arbitrary** (synchronous, asynchronous or zero)

$$\left[\mathbf{f}_{qd0}\right] = \left[\mathbf{T}_{qd0}(\theta)\right] \left[\mathbf{f}_{abc}\right]$$

where

$$\begin{bmatrix} \mathbf{T}_{qd0}(\theta) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos\theta & \cos\left(\theta - 2\pi/3\right) & \cos\left(\theta + 2\pi/3\right) \\ \sin\theta & \sin\left(\theta - 2\pi/3\right) & \sin\left(\theta + 2\pi/3\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$