Table of Contents

1. Introduction to Electric Machines

2. Electromagnetic Circuits

3. Principle of Electromechanical Energy Conversion

4. Principle of Direct Current (DC) Machines

5. DC Generators

6. DC Motors
Chapter 3
Principle of Electromechanical Energy Conversion

3.1. Electromechanical Relations
3.2. Slow versus Fast Movements
3.3. Mechanical Force Calculations
3.4. Developed Torque in Doubly Excited Systems
Electromechanical Relations
Motoring Case

\[P_{elec} \rightarrow \text{Electrical System} \rightarrow \text{Coupling Field} \rightarrow \text{Mechanical System} \rightarrow P_{mech} \]

- Electrical System
 - Electrical losses
 - Ohmic (copper) losses

- Coupling Field
 - Magnetic losses
 - Hysteresis losses
 - Eddy current losses

- Mechanical System
 - Mechanical losses
 - Bearing losses
 - Ventilation
 - Windage

\[W_{elec} = W_{field} + W_{mech} \]
\[dW_{elec} = dW_{field} + dW_{mech} \]
Magnetic System with Single Excitation

\[e = v - ri \]

\[ei = vi - ri^2 \]

\[eidt = vidt - ri^2 dt \]

\[dW_{elec} = dW_{field} + dW_{mech} \]

\[dW_{elec} = dW_{field} = eidt \]

\[dW_{field} = id\lambda \]

\[dW_{mech} = 0 \]

\[e = \frac{d\lambda}{dt} \]

\[\lambda = N\phi \]
Magnetic Relay with Single Excitation

Assumption 1: The movable part cannot move or is not allowed to move

\[dW_{mech} = 0 \]

\[dW_{elec} = dW_{field} = id\lambda \]
Magnetic Relay with Single Excitation

Assumption 1: The movable part cannot move

\[
\begin{align*}
 dW_{\text{mech}} &= 0 \\
 dW_{\text{elec}} &= dW_{\text{field}} = id\lambda \\
 W_{\text{field}} &= \int_0^\lambda id\lambda \\
 \lambda &= N\phi \\
 Ni &= H_c l_c + H_g l_g \\
 H_g &= \frac{B}{\mu_0} \\
 W_{\text{field}} &= \int_0^B \left(H_c l_c + \frac{B}{\mu_0} l_g \right) AdB
\end{align*}
\]
Magnetic Relay with Single Excitation

Assumption 1: The movable part cannot move

\[W_{\text{field}} = \int_0^B \left(H_c l_c + \frac{B}{\mu_0} l_g \right) A dB \]

\[W_{\text{field}} = V_c \int_0^B H_c dB + V_g \frac{B^2}{2\mu_0} \]

- Stored magnetic energy in the core
- Stored magnetic energy in the air-gap

where

- \(V_c \) is the core volume
- \(V_g \) is the air-gap volume
Magnetic Relay with Single Excitation

Assumption 1: The movable part cannot move

In the case of linear systems:
\(\mu_r \rightarrow \text{constant} \)

\[H_c = \frac{B}{\mu_0 \mu_r} \]

\[W_{field} = V_c \frac{B^2}{2\mu_0 \mu_r} + V_g \frac{B^2}{2\mu_0} \]

Stored magnetic energy in the core

Stored magnetic energy in the air-gap
Magnetic Relay with Single Excitation

Example 1: In the following system if the air-gap flux density is 1 T and air-gap length is constant and fringing effect is neglected, calculate:

a) The DC source voltage;
b) Stored magnetic energy.
Magnetic Relay with Single Excitation

Solution 1: \(B_g = B_c = 1 \text{T} \)

From the curve \(H_c = 670 \text{ At/m} \)

\[
H_g = \frac{B_g}{\mu_0} = \frac{1}{4\pi \times 10^{-7}} = 795 \times 10^3 \text{ At/m}
\]

\(l_c = 0.6 \text{ m} \quad l_g = 5 \text{ mm} \)

\[
N_i = H_c l_c + 2H_g l_g
\]

\[
i = \frac{1}{N} \left(H_c l_c + 2H_g l_g \right) = 33.4 \text{ A}
\]

\(v_{dc} = ri = 167 \text{ V} \)
Magnetic Relay with Single Excitation

Solution 1: \[B_g = B_c = 1 \text{ T} \]

\[
W_{\text{field}} = V_c \int_0^1 H_c dB + V_g \frac{B^2}{2\mu_0}
\]

\[V_g = 2 \times 0.005 \times 0.1 \times 0.05 = 5 \times 10^{-5} \text{ m}^3 \]

\[V_c = 0.6 \times 0.1 \times 0.05 = 3 \times 10^{-3} \text{ m}^3 \]

\[
W_{\text{field}} = 3 \times 10^{-3} \times 335 + 5 \times 10^{-5} \times \frac{1^2}{2 \times 4\pi \times 10^{-7}}
\]

\[W_{\text{field}} = 1.005 + 19.895 = 20.9 \text{ J} \]
Energy and Coenergy

Energy

\[W_{field} = \int_0^\lambda id\lambda \]

Coenergy

\[W'_{field} = \int_0^i \lambda di \]

\[W_{field} + W'_{field} = \lambda i \]
The λ-i curve varies with the air-gap length.

Increasing air-gap length
Magnetic Relay with Single Excitation

Assumption 2: The movable part can move but **slowly**

In this case the **current remains constant** during the movement.
Magnetic Relay with Single Excitation

Assumption 2: The movable part can move but **slowly**

From o to a: No movement yet, therefore

$$dW_{elec} = dW_{field} = id\lambda = A_{oad}$$

$$dW_{mech} = 0$$
Magnetic Relay with Single Excitation

Assumption 2: The movable part can move but slowly

From a to b:
\[dW_{elec} = id\lambda = i_1(\lambda_2 - \lambda_1) = A_{abcd} \]

\[dW_{field} = W_{field(b)} - W_{field(a)} = A_{abc} - A_{oad} \]

\[dW_{elec} = dW_{field} + dW_{mech} \]

\[dW_{mech} = A_{oab} \]
Magnetic Relay with Single Excitation

Assumption 3: The movable part can move but very fast

In this case the flux linkage remains constant during the movement.
Magnetic Relay with Single Excitation

Assumption 3: The movable part can move but very fast

From o to a: No movement yet, therefore

\[dW_{elec} = dW_{field} = id\lambda = A_{oad} \]

\[dW_{mech} = 0 \]
Magnetic Relay with Single Excitation

Assumption 3: The movable part can move but very fast

From \(a \) to \(c \):
\[
dW_{elec} = id\lambda = 0
\]

\[
dW_{field} = W_{field(c)} - W_{field(a)} = A_{ocd} - A_{oad}
\]

\[
dW_{elec} = dW_{field} + dW_{mech}
\]
Magnetic Relay with Single Excitation

Assumption 3: The movable part can move but very fast

From c to b: No movement, therefore \(dW_{mech} = 0 \)

\[
dW_{elec} = dW_{field} = id\lambda = A_{cbed}
\]
Some Questions (H.W)

1- Why does the current remain constant during the slow movement?

2- Why does the flux linkage remain constant during the fast movement?

3- Why should the currents at the open and closed stages be the same?
Assumption 4: The movable part moves with normal speed
Magnetic Relay with Single Excitation

Assumption 4: The movable part moves with *normal speed*

From *o* to *a*: No movement yet, therefore

\[dW_{elec} = dW_{field} = id\lambda = A_{oad} \]
Magnetic Relay with Single Excitation

Assumption 4: The movable part moves with normal speed

From \(a \) to \(c \):

\[
dW_{elec} = id\lambda = A_{aced}
\]

\[
dW_{field} = W_{field(c)} - W_{field(a)} = A_{oce} - A_{oad}
\]

\[
dW_{elec} = dW_{field} + dW_{mech}
\]

\[
dW_{mech} = A_{oac}
\]
Assumption 4: The movable part moves with normal speed

From c to b: No Movement, therefore

\[dW_{elec} = dW_{field} = id\lambda = A_{cbfe} \]
Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown below. If the energy conversion efficiency is defined as follows, calculate R_1 and R_2

\[
R = \frac{\text{Converted Energy}}{\text{Input Electrical Energy}}
\]

\[
R_1 = \frac{\int_{\lambda_1}^{\lambda_2} E_1(\lambda) \, d\lambda}{\int_{\lambda_1}^{\lambda_2} E_{in}(\lambda) \, d\lambda}
\]

\[
R_2 = \frac{\int_{\lambda_1}^{\lambda_2} E_2(\lambda) \, d\lambda}{\int_{\lambda_1}^{\lambda_2} E_{in}(\lambda) \, d\lambda}
\]
Electromechanical Energy Conversion

Solution 2: Part (1)

\[W_{elec1} = \int_{\lambda_A}^{\lambda_B} i d\lambda + \int_{\lambda_B}^{\lambda_O} i d\lambda = \int_{0}^{1} 4 \lambda d\lambda + \int_{1}^{3} 4 d\lambda = 10 \]

\[W_{mech1} = A_{OABO} = 4 \]

\[R_1 = \frac{W_{mech1}}{W_{elec1}} = \frac{4}{10} = 0.4 \]
Electromechanical Energy Conversion

Solution 2: Part (2)

\[W_{elec2} = \int_{\lambda_O}^{\lambda_A} id\lambda + \int_{\lambda_A}^{\lambda_B} id\lambda + \int_{\lambda_B}^{\lambda_C} id\lambda = \int_0^1 4\lambda d\lambda + \int_1^3 4d\lambda \int_3^3 id\lambda = 10 \]

\[W_{mech2} = A_{OABCO} = 7 \]

\[R_2 = \frac{W_{mech2}}{W_{elec2}} = \frac{7}{10} = 0.7 \]
Mechanical Force

The average force is calculated as the mechanical work divided by the displacement

\[F_{ave} = \frac{\text{Mechanical Work}}{\text{Displacement}} \]

\[\lambda \quad (\text{Wb.t}) \]

\[x = g \quad \text{Fully closed} \]

\[x + dx \quad x = 0 \quad \text{Fully open} \]

(no movement yet)
Mechanical Force

\[dW_{\text{mech}} = A_{oab} \]

If the flux linkage is constant (fast movement),

\[dW_{\text{mech}} = A_{oah} \]

\[dW_{\text{elec}} = 0 \]

\[dW_{\text{mech}} = -dW_{\text{field}} \]

\[F \, dx = -dW_{\text{field}} \]

\[F = -\frac{\partial W_{\text{field}}(\lambda, x)}{\partial x} \quad \lambda = \text{cte} \]
Mechanical Force

\[dW_{\text{mech}} = A_{oab} \]

- If the current is constant (slow movement),
 \[dW_{\text{mech}} = A_{oac} \]

\[dW_{\text{elec}} = A_{acdf} = A_{okcd} - A_{okaf} \]

\[dW_{\text{elec}} = (W_{\text{field}(c)} + W'_{\text{field}(c)}) - (W_{\text{field}(a)} + W'_{\text{field}(a)}) = dW_{\text{field}} + dW'_{\text{field}} \]

\[dW_{\text{elec}} = dW_{\text{field}} + dW_{\text{mech}} \]

\[Fdx = dW'_{\text{field}} \]

\[F = \frac{\partial W'_{\text{field}}(i, x)}{\partial x} \]

\[i = \text{cte} \]
Force and Torque Calculation

<table>
<thead>
<tr>
<th>Translational movement</th>
<th>Rotational movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>Torque</td>
</tr>
<tr>
<td>(F = -\frac{\partial W_{\text{field}}(\lambda, x)}{\partial x} \bigg</td>
<td>_{\lambda=\text{cte}})</td>
</tr>
<tr>
<td>(F = \frac{\partial W'_{\text{field}}(i, x)}{\partial x} \bigg</td>
<td>_{i=\text{cte}})</td>
</tr>
</tbody>
</table>

where \(\theta \) is the angular position.
Electromechanical Energy Conversion

Example 3: In an electromechanical system \(i = \left(\lambda x / 0.09 \right)^2 \) for \(0 \leq i \leq 4 \) and \(3 \leq x \leq 10 \text{ cm} \). Calculate the force exerted on the movable part if the current is 3 A and air-gap length is 5 cm.

Solution: 1st method (Coenergy)

\[
W'_{\text{field}} = \int_0^i \lambda di
\]

\[
F = \left. \frac{\partial W'_{\text{field}}(i, x)}{\partial x} \right|_{i=\text{cte}}
\]

2nd method (Energy)

\[
W_{\text{field}} = \int_0^\lambda id\lambda
\]

\[
F = -\left. \frac{\partial W_{\text{field}}(\lambda, x)}{\partial x} \right|_{\lambda=\text{cte}}
\]
Electromechanical Energy Conversion

\[i = \left(\frac{\lambda x}{0.09} \right)^2 \quad \text{for} \quad 0 \leq i \leq 4 \quad 3 \leq x \leq 10 \text{ cm} \]

\[i = 3 \text{ A} \quad x = 5 \text{ cm} \quad F = ? \]

Solution 3: 1st method (Coenergy)

\[\lambda = \frac{0.09 \sqrt{i}}{x} \quad \Rightarrow \quad W'_{\text{field}} = \int_0^i \lambda di = \int_0^i \frac{0.09 \sqrt{i}}{x} di = \frac{0.09}{x} \frac{2}{3} i^{3/2} \]

\[F = \frac{\partial W'_{\text{field}}(i, x)}{\partial x} \bigg|_{i=\text{cte}} = -\frac{0.09}{x^2} \frac{2}{3} i^{3/2} \]

For \(i = 3 \text{ A} \) and \(x = 5 \text{ cm} \)

\[F = -\frac{0.09}{x^2} \frac{2}{3} i^{3/2} = -124 \text{ N} \]
Electromechanical Energy Conversion

\[i = \left(\frac{\lambda x}{0.09} \right)^2 \quad 0 \leq i \leq 4 \quad 3 \leq x \leq 10 \text{ cm} \]

\[i = 3 \text{ A} \quad x = 5 \text{ cm} \quad F = ? \]

Solution 3: 2nd method (Energy)

\[
W_{\text{field}} = \int_0^\lambda i d\lambda = \int_0^\lambda \left(\frac{\lambda x}{0.09} \right)^2 d\lambda = \frac{x^2}{0.09^2} \frac{\lambda^3}{3}
\]

\[
F = -\left. \frac{\partial W_{\text{field}}(\lambda, x)}{\partial x} \right|_{\lambda=\text{cte}} = -\frac{2x}{0.09^2} \frac{\lambda^3}{3} = -\frac{2x}{0.09^2} \frac{1}{3} \left(\frac{0.09 \sqrt{i}}{x} \right)^3
\]

For \(i = 3 \text{ A} \) and \(x = 5 \text{ cm} \)

\[
F = -\frac{2x}{0.09^2} \frac{1}{3} \left(\frac{0.09 \sqrt{i}}{x} \right)^3 = -124.7 \text{ N}
\]
Electromechanical Energy Conversion

Example 4: In the following system assume flux is constant during the movement, calculate the average force.
Solution 4: Since the permeability of the core goes to infinity, the system is linear.

\[\lambda = Li \quad \lambda = N\phi \]

\[L = \frac{N^2}{\mathcal{R}} \]

\[W_{\text{field}} = \frac{1}{2}Lt^2 = \frac{1}{2} \lambda i = \frac{1}{2} \frac{\lambda^2}{L} = \frac{1}{2} \mathcal{R}\phi^2 \]

\[W_{\text{field}} = \frac{1}{2} \left(\frac{g - x}{\mu_0 A} \right) \phi^2 \]

\[F = -\frac{\partial W_{\text{field}}(\lambda, x)}{\partial x} \bigg|_{\lambda=\text{cte}} = \frac{1}{2} \phi^2 \frac{1}{\mu_0 A} \]
Electromechanical Energy Conversion

Example 5: In an electromechanical system the $\lambda - i$ characteristics is defined as $i = \lambda^{3/2} + 2.5\lambda(x-1)^2$ for $0 < x < 1^m$, calculate the average force when $x = 0.6^m$.

$$W_{field} = \int_0^\lambda i d\lambda = \int_0^\lambda (\lambda^{3/2} + 2.5\lambda(x-1)^2) d\lambda$$

$$W_{field} = \frac{2}{5} \lambda^{5/2} + \frac{5}{4} \lambda^2 (x-1)^2$$

$$F = -\frac{\partial W_{field}(\lambda, x)}{\partial x} \bigg|_{\lambda=cte} = -\frac{5}{4} 2\lambda^2 (x - 1)$$

$$F(x = 0.6) = \lambda^2$$
Developed Torque in Doubly Excited Systems

Consider the following electric motor with double excitation.

\[
dW_{elec} = i_s \, d\lambda_s + i_r \, d\lambda_r
\]

where

\[
\begin{align*}
\lambda_s &= L_s i_s + M_{sr} i_r \\
\lambda_r &= M_{sr} i_s + L_r i_r
\end{align*}
\]

- \(i_s \) stator current
- \(i_r \) rotor current
- \(\lambda_s \) stator flux linkage
- \(\lambda_r \) rotor flux linkage
- \(L_s \) stator self-inductance
- \(L_r \) rotor self-inductance
- \(M_{sr} \) mutual inductance
Developed Torque in Doubly Excited Systems

The inductances are defined as follows

\[L_s = \frac{N_s^2}{\mathcal{R}_s} \]
\[L_r = \frac{N_r^2}{\mathcal{R}_r} \]
\[M_{sr} = \frac{N_s N_r}{\mathcal{R}_{sr}} \]

where

- \(N_s \) stator number of turns
- \(N_r \) rotor number of turns
- \(\mathcal{R}_s \) reluctance seen by stator flux
- \(\mathcal{R}_r \) reluctance seen by rotor flux
- \(\mathcal{R}_{sr} \) reluctance seen by resultant flux
Developed Torque in Doubly Excited Systems

Assumption 1: The rotor cannot rotate

\[dW_{elec} = i_s d(L_s i_s + M_{sr} i_r) + i_r d(M_{sr} i_s + L_r i_r) \]

\[dW_{elec} = L_s i_s di_s + M_{sr} i_s di_r + M_{sr} i_r di_s + L_r i_r di_r \]

\[dW_{elec} = dW_{field} + dW_{mech} \]

\[dW_{field} = L_s i_s di_s + M_{sr} d(i_s i_r) + L_r i_r di_r \]

\[W_{field} = L_s \int_0^i s i_s di_s + M_{sr} \int_0^i s i_r d(i_s i_r) + L_r \int_0^r i_r di_r \]

\[W_{field} = \frac{1}{2} L_s i_s^2 + M_{sr} i_s i_r + \frac{1}{2} L_r i_r^2 \]

(1)
Developed Torque in Doubly Excited Systems

Assumption 2: The rotor can rotate

\[dW_{elec} = i_s d(L_s i_s + M_{sr} i_r) + i_r d(M_{sr} i_s + L_r i_r) \]

\[dW_{elec} = L_s i_s d i_s + i_s^2 d L_s + M_{sr} i_s d i_r + i_r i_s d M_{sr} \]
\[+ M_{sr} i_r d i_s + i_s i_r d M_{sr} + L_r i_r d i_r + i_r^2 d L_r \]

Taking differentiation from the relation \(W_{field} = \frac{1}{2} L_s i_s^2 + M_{sr} i_s i_r + \frac{1}{2} L_r i_r^2 \)

yields

\[dW_{field} = L_s i_s d i_s + \frac{1}{2} i_s^2 d L_s + M_{sr} i_s d i_r + i_r i_s d M_{sr} \]
\[+ M_{sr} i_r d i_s + L_r i_r d i_r + \frac{1}{2} i_r^2 d L_r \]
Developed Torque in Doubly Excited Systems

Assumption 2: The rotor can rotate

\[dW_{elec} = L_s i_s d_i_s + i_s^2 dL_s + M_{sr} i_s d_i_r + i_r i_s dM_{sr} \]
\[+ M_{sr} i_r d_i_s + i_s i_r dM_{sr} + L_r i_r d_i_r + i_r^2 dL_r \]

\[dW_{field} = L_s i_s d_i_s + \frac{1}{2} i_s^2 dL_s + M_{sr} i_s d_i_r + i_r i_s dM_{sr} \]
\[+ M_{sr} i_r d_i_s + L_r i_r d_i_r + \frac{1}{2} i_r^2 dL_r \]

\[dW_{elec} = dW_{field} + dW_{mech} \]

\[dW_{mech} = \frac{1}{2} i_s^2 dL_s + i_s i_r dM_{sr} + \frac{1}{2} i_r^2 dL_r \]
Developed Torque in Doubly Excited Systems

Assumption 2: The rotor can rotate

\[dW_{\text{mech}} = \frac{1}{2} i_s^2 dL_s + i_s i_r dM_{sr} + \frac{1}{2} i_r^2 dL_r \]

Since the torque is defined as

\[T = \frac{dW_{\text{mech}}}{d\theta} \]

it yields

\[T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} + i_s i_r \frac{dM_{sr}}{d\theta} + \frac{1}{2} i_r^2 \frac{dL_r}{d\theta} \]

Reluctance torque

Electromagnetic torque

Reluctance torque
Developed Torque in Doubly Excited Systems

Case 1: Both rotor and stator have salient structures:

\[L_s, L_r \text{ and } M_{sr} \text{ are function of } \theta. \]

\[
T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} + i_s i_r \frac{dM_{sr}}{d\theta} + \frac{1}{2} i_r^2 \frac{dL_r}{d\theta}
\]

Electromagnetic torque

- Reluctance torque due to rotor saliency
- Reluctance torque due to stator saliency

Reluctance torque is independent of **current direction**.
Developed Torque in Doubly Excited Systems

Case 2: Rotor has salient structures but stator is cylindrical:

\[L_s \text{ and } M_{sr} \text{ are function of } \theta. \]

\[
T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} + i_s i_r \frac{dM_{sr}}{d\theta} + \frac{1}{2} i_r^2 \frac{dL_r}{d\theta}
\]

- Electromagnetic torque
- Reluctance torque due to rotor saliency
Developed Torque in Doubly Excited Systems

Case 3: Stator has salient structures but rotor is cylindrical:

\[L_r \] and \[M_{sr} \] are function of \(\theta \).

\[
T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} + i_s i_r \frac{dM_{sr}}{d\theta} + \frac{1}{2} i_r^2 \frac{dL_r}{d\theta}
\]

Electromagnetic torque

Reluctance torque due to rotor saliency
Developed Torque in Doubly Excited Systems

Case 4: Both rotor and stator are cylindrical (non-salient):
only \(M_{sr} \) is a function of \(\theta \).

\[
T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} + i_s i_r \frac{dM_{sr}}{d\theta} + \frac{1}{2} i_r^2 \frac{dL_r}{d\theta}
\]

Electromagnetic torque

\[
T = i_s i_r \frac{dM_{sr}}{d\theta}
\]
Developed Torque in Doubly Excited Systems

Example 6: In the following figure the rotor has no winding and the self-inductance is assumed to be \(L_s = L_0 + L_1 \cos 2\theta \) where \(\theta \) is the rotor position. If stator current is \(i_s = I_m \sin \omega t \).

a) Calculate the torque exerted on the rotor.

b) Find the conditions in which the average torque is not zero if \(\theta = \omega_m t + \delta \) where \(\omega_m \) is the angular velocity of the rotor and \(\delta \) is the initial position of the rotor.

\[
T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} + i_s i_r \frac{dM_{sr}}{d\theta} + \frac{1}{2} i_r^2 \frac{dL_r}{d\theta}
\]
Developed Torque in Doubly Excited Systems

Solution 6: \[L_s = L_0 + L_1 \cos 2\theta \quad i_s = I_m \sin \omega t \quad i_r = 0 \]

Part a)

\[T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} + i_s i_r \frac{dM_{sr}}{d\theta} + \frac{1}{2} i_r^2 \frac{dL_r}{d\theta} \]

Since rotor has no winding:

\[T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} \]

\[T = \frac{1}{2} (I_m \sin \omega t)^2 \frac{d}{d\theta} (L_0 + L_1 \cos 2\theta) \]

\[T = -I_m^2 L_1 \sin 2\theta \sin^2 \omega t \]
Developed Torque in Doubly Excited Systems

Solution 6: \[L_s = L_0 + L_1 \cos 2\theta \]

Part b)
\[\theta = \omega_m t + \delta \]
\[i_s = I_m \sin \omega t \]
\[i_r = 0 \]

\[T = -I_m^2 L_1 \sin 2\theta \sin^2 \omega t \]

\[T = -I_m^2 L_1 \sin 2(\omega_m t + \delta) \frac{1-\cos 2\omega t}{2} \]

\[T = -\frac{1}{2} I_m^2 L_1 \{ \sin 2(\omega_m t + \delta) - \frac{1}{2} \sin 2[(\omega_m + \omega)t + \delta] - \frac{1}{2} \sin 2[(\omega_m - \omega)t + \delta] \} \]

To have non-zero average torque the coefficient of \(t \) in one of the above sin terms should be zero:

\[\omega_m = 0 \quad \text{or} \quad \omega_m = -\omega \quad \text{or} \quad \omega_m = \omega \]
Developed Torque in Doubly Excited Systems

Solution 6:
Part b)

\[T = -\frac{1}{2} I_m^2 L_1 \left\{ \sin 2(\omega_m t + \delta) - \frac{1}{2} \sin 2[(\omega_m + \omega)t + \delta] - \frac{1}{2} \sin 2[(\omega_m - \omega)t + \delta] \right\} \]

1) If \(\omega_m = 0 \)

\[T_{ave} = -\frac{1}{2} I_m^2 L_1 \sin 2 \delta \]

2) If \(\omega_m = \pm \omega \)

\[T_{ave} = \frac{1}{4} I_m^2 L_1 \sin 2 \delta \]
Example 7: In the following system assume the movable part is fixed and the air-gap length is $d = 1^\text{mm}$.

1) Calculate the current and voltage if flux density in air-gap is 0.5 T.
2) Calculate the stored energy.
3) Obtain the force exerted on the movable part.
4) Compute the inductance of the winding.

![Diagram of an electromechanical system with a movable part, a spring, and flux density graph.](image-url)
Solution 7: \[d = l_g = 1 \text{ mm} \quad l_c = 0.6 \text{ m} \quad \mu_0 = 4\pi \times 10^{-7} \]

Part 1) \[i = ? \quad V = ? \]

\[B_g = B_c = 0.5 \text{ T} \]

From the curve \[H_c = 350 \text{ At/m} \]

\[i = \frac{H_c l_c + H_g l_g}{N} = \frac{H_c l_c + \frac{B_g}{\mu_0} l_g}{N} \]

\[i = 1.215 \text{ A} \]

\[V = r i = 4.86 \text{ V} \]
Solution 7: \(d = l_g = 1 \text{mm} \)

Part 2) \(W_{\text{field}} = ? \)

\[
W_{\text{field}} = V_c \int_0^B H_c dB + V_g \frac{B^2}{2\mu_0}
\]

\(W_{\text{field}} = 0.38 \text{ J} \)

\(l_c = 0.6 \text{ m} \)
\(\mu_0 = 4\pi \times 10^{-7} \)
\(B = B_g = B_c = 0.5 \text{ T} \)
\(H_c = 350 \text{ At/m} \)
\(V_c = 0.6 \times 0.05 \times 0.05 = 1.5 \times 10^{-3} \text{ m}^3 \)
\(V_g = 0.001 \times 0.05 \times 0.05 = 2.5 \times 10^{-6} \text{ m}^3 \)
Electromechanical Energy Conversion

Solution 7: \(d = l_g = 1 \text{ mm} \)

Part 3) \(F = ? \)

\[
B = B_g = B_c = 0.5 \text{ T}
\]

\[
A_g = 0.05 \times 0.05 = 2.5 \times 10^{-3} \text{ m}^2
\]

\[
\mu_0 = 4\pi \times 10^{-7}
\]

\[
l_c = 0.6 \text{ m}
\]

\[
W_{\text{field}} = l_c A_c \int_{0}^{B} H_c dB + l_g A_g \frac{B^2}{2\mu_0}
\]

\[
l_g \rightarrow x
\]

\[
F = -\left. \frac{\partial W_{\text{field}}}{\partial x} \right|_{x=\text{cte}} = -A_g \frac{B^2}{2\mu_0}
\]

\[
F = -248.7 \text{ N}
\]
Electromechanical Energy Conversion

Solution 7: \(d = l_g = 1 \text{ mm} \)

Part 3) \(L = ? \)

\[
L = \frac{\lambda}{i} = \frac{N\phi}{i} = \frac{NAB}{i}
\]

\[
L = \frac{500 \times 2.5 \times 10^{-3} \times 0.5}{1.215}
\]

\(L = 0.514 \text{ H} \)

\(l_c = 0.6 \text{ m} \)

\(\mu_0 = 4\pi \times 10^{-7} \)

\(B = B_g = B_c = 0.5 \text{ T} \)

\(A_g = 0.05 \times 0.05 = 2.5 \times 10^{-3} \text{ m}^2 \)
Electromechanical Energy Conversion

Example 8: In the following system assume the current is 1.215 A and the air-gap is fully closed. \(d = 0 \)
1) Calculate the flux density.
2) Calculate the force exerted on spring.
3) Calculate the stored energy
Electromechanical Energy Conversion

Solution 8: \[d = l_g = 0 \]

Part 1) \[B = ? \]

\[Ni = H_c l_c + H_g l_g \]

From the curve \[B_c = 1.21 \, \text{T} \]

\[H_c = \frac{Ni}{l_c} = 1012 \, \text{At/m} \]
Electromechanical Energy Conversion

Solution 8: \(d = l_g = 0 \)

Part 2) \(W_{field} = ? \)

\[
W_{field} = V_c \int_0^B H_c dB + V_g \frac{B^2}{2\mu_0}
\]

\[
W_{field} = V_c \int_0^B H_c dB
\]

\[W_{field} = 0.92 \text{ J} \]
Solution 8: \(d = l_g = 0 \)

Part 3) \(F = ? \)

\[B = B_g = B_c = 1.21 \, \text{T} \]

\[A_g = 0.05 \times 0.05 = 2.5 \times 10^{-3} \, \text{m}^2 \]

\[l_c = 0.6 \, \text{m} \]

\[\mu_0 = 4\pi \times 10^{-7} \]

\[W_{field} = l_c A_c \int_0^B H_c dB + l_g A_g \frac{B^2}{2\mu_0} \]

\[l_g \rightarrow x \]

\[F = -\frac{\partial W_{field}}{\partial x} \bigg|_{\lambda=\text{cte}} = -A_g \frac{B^2}{2\mu_0} \]

\[F = -1456.4 \, \text{N} \]
Developed Torque

Example 9: In the following figure the rotor has no winding and the self-inductance is assumed to be $L_s = 0.1 - 0.3 \cos 2\theta - 0.2 \cos 4\theta$ where θ is the rotor position. If stator current is 10 Aac with frequency of 60 Hz:

a) In which rotational velocity the average torque is not zero if

$\theta = \omega_m t + \delta$ where ω_m is the angular velocity of the rotor and δ is the initial position of the rotor.

b) In the velocity obtained above calculate the maximum torque and mechanical power.

c) Obtain maximum torque at zero velocity.

\[
T = \frac{1}{2} i_s^2 \frac{dL_s}{d\theta} + i_s i_r \frac{dM_{sr}}{d\theta} + \frac{1}{2} i_r^2 \frac{dL_r}{d\theta}
\]
Developed Torque

Solution 9: \[L_s = 0.1 - 0.3 \cos 2\theta - 0.2 \cos 4\theta \] \[\theta = \omega_m t + \delta \]

Part a)
\[i_s = 10 \cos \omega_s t \] \[\omega_s = 2\pi \times 60 = 120\pi \]

\[T = \frac{\frac{1}{2} i_s^2 dL_s}{d\theta} \]

\[T = \frac{1}{2} (10 \cos \omega_s t)^2 \frac{d}{d\theta} (0.1 - 0.3 \cos 2\theta - 0.2 \cos 4\theta) \]

\[T = 50 \cos^2 \omega_s t (0.6 \sin 2\theta + 0.8 \sin 4\theta) \]

\[T = 50 \frac{1 + \cos 2\omega_s t}{2} [0.6 \sin 2(\omega_m t + \delta) + 0.8 \sin 4(\omega_m t + \delta)] \]
Developed Torque

Solution 9: \[L_s = 0.1 - 0.3 \cos 2\theta - 0.2 \cos 4\theta \]

\[\theta = \omega_m t + \delta \]

Part a)

\[i_s = 10 \cos \omega_s t \]

\[\omega_s = 2\pi \times 60 = 120\pi \]

\[T = 50 \frac{1 + \cos 2\omega_s t}{2} \left[0.6 \sin 2(\omega_m t + \delta) + 0.8 \sin 4(\omega_m t + \delta) \right] \]

\[\sin a \cos b = \frac{1}{2} [\sin(a + b) + \sin(a - b)] \]

\[T = 25 \left\{ 0.6 \sin 2(\omega_m t + \delta) + 0.8 \sin 4(\omega_m t + \delta) \right. \\
+ 0.3 \sin[2(\omega_m + \omega_s)t + 2\delta] + 0.3 \sin[2(\omega_m - \omega_s)t + 2\delta] \\
+ 0.4 \sin[2(2\omega_m + \omega_s)t + 4\delta] + 0.4 \sin[2(2\omega_m - \omega_s)t + 4\delta] \right\} \]

\[\omega_m = 0 \quad \text{or} \quad \omega_m = \pm \omega_s = \pm 120\pi \quad \text{or} \quad \omega_m = \pm \frac{1}{2} \omega_s = \pm 60\pi \]
Developed Torque

Solution 9: \(L_s = 0.1 - 0.3 \cos 2\theta - 0.2 \cos 4\theta \)

Part b)

\[\omega_m = \pm \omega_s = \pm 120\pi \]

\[T_{ave} = 7.5 \sin 2\delta \]

\[T_{ave-max} = 7.5 \text{ Nm} \quad \text{at} \quad \delta = k\pi \pm \frac{\pi}{4} \]

\[P = T_{ave-max} \omega_m = 7.5 \times 120\pi = 2827 \text{ W} \]

\[\omega_m = \pm \frac{1}{2} \omega_s = \pm 60\pi \]

\[T_{ave} = 10 \sin 4\delta \]

\[T_{ave-max} = 10 \text{ Nm} \quad \text{at} \quad \delta = \frac{k\pi}{2} \pm \frac{\pi}{8} \]

\[P = T_{ave-max} \omega_m = 10 \times 60\pi = 1885 \text{ W} \]
Developed Torque

Solution 9:

\[L_s = 0.1 - 0.3 \cos 2\theta - 0.2 \cos 4\theta \]

Part c)

\[\omega_m = 0 \quad T_{ave} = 15 \sin 2\delta + 20 \sin 4\delta \]

\[\frac{\partial T_{ave}}{\partial \delta} = 0 \implies 30 \cos 2\delta + 80 \cos 4\delta = 0 \]

\[3 \cos 2\delta + 8 \left(2 \cos^2 2\delta - 1 \right) = 0 \]

\[16 \cos^2 2\delta + 3 \cos 2\delta - 8 = 0 \]

\[\begin{cases} \cos 2\delta = 0.62 \\ \cos 2\delta = -0.81 \end{cases} \]

\[\delta = 25.8^\circ \]

\[\delta = 71.9^\circ \]

\[T_{ave-max} = 31 \text{ Nm} \]

\[T_{ave-max} = -10 \text{ Nm} \]

\[\theta = \omega_m t + \delta \]

\[\omega_s = 2\pi \times 60 = 120\pi \]