In The Name of God The Most

Compassionate, The Most Merciful

Electric Machines II

Table of Contents

1. Single-Phase Transformers

2. Principle of Alternating Current (AC) Machines

3. Three-Phase Induction (Asynchronous) Machines

Chapter 3 Three-Phase Induction (Asynchronous) Machines

- 3.1. Structure of Induction Machines
- 3.2. Basic Notions of Induction Machines
- 3.3. Different Modes of Induction Machines
- 3.4. Equivalent Circuits of Induction Motors
- 3.5. No-Load and Locked Rotor Tests

Not Included

3.6. Power and Torque in 3-Phase Induction Motors

Structure of Induction Machines

1. Stator

- The stator core is made from the laminated steel.
- The windings are located in **slots**.
- Three-phase windings are connected in **star** or **delta** configuration.

Structure of Induction Machines

2. Rotor

A. Squirrel Cage

- Aluminium or copper bars are located in rotor slots.
- The bars are short-circuited from both sides using end rings.

Structure of Induction Machines

2. Rotor

B. Wound Rotor

- Aluminium or copper windings are located in rotor slots.
- There are three slip-rings and brushes used for energy transfer.

 Synchronous speed. Assume the frequency of the applied voltage to the stator winding is f and the machine has p poles; the synchronous speed is defined as:

$$w_s = \frac{4\pi f}{p}$$
 rad/s

Synchronous speed is a mechanical quantity.

2. Rotor speed is the speed of the rotor.

In motoring mode

Rotor speed is a mechanical quantity.

3. Slip speed is the difference between the synchronous speed and the rotor speed:

$$N_{slip} = N_s - N_r$$
 rpm

$$n_{slip} = n_s - n_r$$
 rps

$$\omega_{slip} = \omega_s - \omega_r$$
 rad/s

Slip speed is a mechanical quantity.

4. Slip is the slip speed divided by the synchronous speed:

Slip is a dimensionless quantity.

How Does an Induction Motor Work?

- Connecting the 3-phase stator windings to a 3-phase AC source flows the current in the stator windings.
- 2. The stator current causes a **rotating magnetic field** with synchronous speed.
- 3. The rotating magnetic field, **induces a voltage** in the rotor bars.
- Since the rotor bars are short-circuited by end-rings, a current flows in the rotor bars.
- 5. The rotor bar current produces **another rotating magnetic field** which rotates with synchronous speed in the same direction as the stator magnetic field.
- 6. Electromagnetic **torque** is developed due to the interaction between two magnetic fields. $T_{em} = kB_r \times B_s$
- 7. The developed torque can **rotate** the rotor.

What is Meant by Asynchronous?

- The induced voltage in rotor bars is due to the stator rotating magnetic field.
- Therefore if the rotor rotates with synchronous speed, no voltage is induced in the rotor bars and no torque can be developed.
- Hence, to develop torque, the rotor speed should be different from the synchronous speed.
- It is because induction motors are often called asynchronous motors.

What is Meant by Asynchronous?

- The induced voltage in rotor bars is due to the stator rotating magnetic field.
- Therefore if the rotor rotates with synchronous speed, no voltage is induced in the rotor bars and no torque can be developed.
- Hence, to develop torque, the rotor speed should be different from the synchronous speed.
- It is because induction motors are often called asynchronous motors.

Different Operating Mode of Induction Machines

1. Motoring Mode

- The stator windings are connected to a 3-phase ac source.
- The mechanical energy is delivered on the motor shaft.

$$> N_s$$

$$N_r$$

$1 \ge S \ge 0$

2017

Shiraz University of Technology

Different Operating Mode of Induction Machines

2. Generating Mode

- The stator windings are connected to a 3-phase ac source.
- The machine is in motoring mode.
- If by using a mechanical mover the rotor speed is increased to above synchronous speed the machine will be a generator.

Different Operating Mode of Induction Machines

3. Plugging or Braking Mode

- If during the motoring mode the sequence of the applied voltage is changed,
- then the rotating magnetic field will change the direction,
- due to rotor inertia the magnetic field speed is in opposite of the rotor speed.
- The rotor will change the direction of rotation if it is not disconnected from the source.

Assume the stator of a p-pole induction motor is connected to an ac source with frequency of f_1 ,

$$S = \frac{N_s - N_r}{N_s}$$

$$N_{slip} = N_s - N_r = SN_s$$

The rotor voltage/current frequency is

$$f_2 = \frac{p(N_s - N_r)}{120} = \frac{pSN_s}{120} = Sf_1$$

The speed of the rotor magnetic field with respect to rotor is

$$N_{frr} = \frac{120f_2}{p} = \frac{120Sf_1}{p} = SN_s$$

The speed of the rotor magnetic field with respect to stator is

$$N_{frs} = N_r + N_{frr} = (1 - S)N_s + SN_s = N_s$$

a \otimes

Example: Consider a 3-phase induction motor with 460 V, 100 horsepower, 4pole and 60 Hz which delivers the nominal power at the slip of 5%.

- a) Calculate the synchronous speed and the rotor speed
- b) Calculate the speed of rotor magnetic field
- c) Calculate the rotor frequency
- d) Calculate the slip speed
- e) Calculate the speed of rotor magnetic field with respect to (1) rotor; (2) stator; and stator magnetic field.

Solution:

a)
$$N_s = \frac{120f_1}{p} = \frac{120 \times 60_1}{4} = 1800 \text{ rpm}$$

$$N_r = (1 - S)N_s = 1710$$
 rpm

b)
$$N_{frs} = N_s = 1800$$
 rpm

c)
$$f_2 = sf_1 = 3$$
 Hz

d)
$$N_{slip} = SN_s = 90$$
 rpm

$$f_1 = 60 \text{ Hz}$$

 $p_1 = 4 \quad S = 0.05$

Solution:

e)
$$N_{frr} = SN_s = 90 \text{ rpm}$$

$$N_{frs} = N_s = 1800$$
 rpm

$$N_{frfs} = 0$$

2017

Equivalent Circuits of Induction Motors Total Equivalent Circuit $I_1 R_1$ $X_1 = 2\pi f_1 L_1$ Air-gap I'_2 $a = \frac{N_1 k_{w1}}{N_2 k_{w2}}$ + $X'_{2} = a^{2}X_{2}$ = $2\pi f_{1}L'_{2}$ $\leq R'_{2} = a^{2}R_{2}$ I_{ϕ} + $X_m = 2\pi f_1 L_m \bigotimes$ $E_1 = aE_2$ $\frac{R_2'}{S}(1-S)$ V_1 • I_c I_m where is the stator applied source frequency. f_1 \otimes V_1 is the stator phase voltage. b) N R_1 is the per-phase stator resistance. *a'* •

Total Equivalent Circuit

- L_1 is the per-phase stator leakage inductance.
- X_1 is the per-phase stator leakage reactance.
- E_1 is the phase induced voltage in stator.
- L_m is the per-phase magnetizing inductance.
- X_m is the per-phase magnetizing reactance.
- $R_{\rm c}$ is the per-phase equivalent resistance to model core losses.
- I_1 is the phase stator current.
- I_{ϕ} is the phase excitation (no-load) current.
- I_m is the phase magnetizing current.
 - is the phase equivalent current to model core losses.

 I_{c}

Total Equivalent Circuit

- *a* is stator per rotor turn ratio.
- E_2 is the phase induced voltage in rotor.
- R_2 is the per-phase rotor resistance.
- R'_2 is the per-phase rotor resistance referred to stator.
- L_2 is the per-phase rotor leakage inductance.
- *L*'₂ is the per-phase rotor leakage inductance referred to stator.
- X_2 is the per-phase rotor leakage reactance under frequency of f_1 .
- X'_2 is the per-phase rotor leakage reactance referred to stator under frequency of f_1 .

Total Equivalent Circuit

- I_2 is the phase rotor current.
- *I*'₂ is the phase rotor current referred to stator.
- P_{ag} is the per-phase air-gap power.

A few points

- The mentioned equivalent circuit is valid for single-phase of a 3phase induction machine.
- In this equivalent circuit all quantities are per-phase.
- All quantities referred to stator side.
- The frequency of the equivalent circuit is f_1 .
- This equivalent circuit is similar to that of a transformer.

Air-Gap Power

Approximated Equivalent Circuits of Induction Motors

Shiraz University of Technology

Thevenin's Equivalent Circuits of Induction Motors

It is obtained from the IEEE equivalent circuit.

Shiraz University of Technology

Power and Torque in 3-phase Induction Motors 5

Input power = Stator copper losses + Core losses + Air-gap power

Developed mechanical power = Mechanical losses + Output power

Dr. A. Rahideh

Power and Torque in 3-phase Induction Motors

Developed mechanical power

$$P_{ag} = T_{mech} \,\omega_s \quad \& \quad P_{ag} = 3\frac{R_2}{S} I_2^2 \quad \Longrightarrow \quad T_{mech} = \frac{3}{\omega_s} \frac{R_2}{S} I_2^2 = \frac{3}{\omega_s} \frac{R_2'}{S} I_2'^2$$

$$T_{mech} = \frac{3}{\omega_s} \frac{R'_2}{S} \frac{V_{th}^2}{\left(R_{th} + \frac{R'_2}{S}\right)^2 + \left(X_{th} + X'_2\right)^2}$$

Power and Torque in 3-phase Induction Motors

Developed mechanical power

Dr. A. Rahideh

Power and Torque in 3-phase Induction Motors

Developed mechanical power

$$T_{mech} = \frac{3}{\omega_s} \frac{R'_2}{S} \frac{V_{th}^2}{\left(R_{th} + \frac{R'_2}{S}\right)^2 + \left(X_{th} + X'_2\right)^2}$$

Shiraz University of Technology

Power and Torque in 3-phase Induction Motors Output or External Power

Shiraz University of Technology

Dr. A. Rahideh

Power and Torque in 3-phase Induction Motors Maximum Torque

$\frac{R'_2}{S_{T_{\text{max}}}} = \sqrt{R_{th}^2 + (X_{th} + X'_2)^2}$ $\frac{dT_{mech}}{dS} = 0$ $S_{T_{\text{max}}} = \frac{R'_2}{\sqrt{R_{th}^2 + (X_{th} + X'_2)^2}}$ $\approx \frac{K_2}{X_{\star \star} + X'}$ $S_{T_{\max}}$? The slip of the maximum torque depends on the rotor resistance.

a′ •

Power and Torque in 3-phase Induction Motors Maximum Torque

the **rotor resistance**.

a′ •

Power and Torque in 3-phase Induction Motors ⁵ Starting Torque

Starting torque is the torque when the rotor speed is zero or S=1.

