

General Theory of Electric Machines

Table of Contents

1. Introduction

2. Transformers

3. Reference-Frame Theory

4. Induction Machines

> 5. Synchronous Machines

Chapter 2 Transformers

2.1. Introduction
2.2. Ideal Transformers
2.3. Model of Two-Winding Transformers
2.4. Simulation of Two-Winding Transformers
2.5. Load Modelling

2.6. Core Saturation Effects

2.7. Three-Phase Connections

Introduction

Transformers have the following characteristics

1. Transformers are electromagnetic energy conversion systems; as they receive electrical energy from the network; convert it to the magnetic energy; and then the magnetic energy is converted to the electrical energy with different voltage and current level.
2. A transformer has at least two windings: a primary and a secondary winding. Primary winding is the winding connected to the power source and the secondary winding is that connected to the load.
3. There is no electrical connection between the primary and secondary windings (except in auto-transformers); the connection is through a magnetic field.

Introduction

4. If the secondary voltage is lower than that of primary, the transformer is step-down; otherwise it is step-up.
5. Swapping the primary and secondary windings will change a step-down transformer to a step-up transformer and viceversa.
6. In a step-up transformer, the number of turns of the secondary winding is higher than that of the primary winding.
7. In a step-down transformer, the number of turns of the secondary winding is lower than that of the primary winding.
8. Since transformers have no mechanical part, their efficiency is normally very high.

Applications of Transformers

1. Electric Power Transmission Systems.
2. Impedance Matching (e.g. in speakers).

3. Blocking the dc component of an ac + dc signal or power.
4. Voltage and current measurement: Voltage or potential transformers (VT) or (PT); Current transformers (CT).

Ideal Transformers

An ideal transformer has the following characteristics:

1. The ohmic losses due to the primary and secondary winding resistances are neglected.

$$
r_{1}=r_{2}=0
$$

2. The core losses are neglected.
3. The magnetizing curve of the transformer core is assumed to be linear.
4. The leakage flux of the windings is neglected.

$$
L_{l 1}=L_{l 2}=0
$$

5. The core permeability goes to infinity.

$$
\mu_{c} \rightarrow \infty \quad L_{m 1} \rightarrow \infty
$$

Ideal Transformers

- The induced voltage in the primary and secondary windings will be

$$
\left.\begin{array}{l}
e_{1}=N_{1} \frac{d \phi_{1}}{d t} \\
e_{2}=N_{2} \frac{d \phi_{2}}{d t} \\
\phi_{1}=\phi_{2}=\phi_{m}
\end{array}\right\} \quad \square \frac{e_{1}}{e_{2}}=\frac{N_{1}}{N_{2}}
$$

Ideal Transformers

- Since the algebraic sum of the magneto-motive forces (MMFs) is zero, in two-winding transformers it follows that:

$$
\sum_{k} N_{k} i_{k}=0 \quad \square \quad N_{1} i_{1}+N_{2} i_{2}=0 \quad \frac{i_{1}}{i_{2}}=-\frac{N_{2}}{N_{1}}
$$

More Realistic Transformers

The transformer has the following characteristics:

1. The ohmic losses due to the primary and secondary winding resistances are considered.
2. The core losses are still neglected.
3. The magnetizing curve of the transformer core is still assumed to be linear.
4. The leakage flux of the windings is considered.
5. The core permeability is a finite value.

Model of Two-Winding Transformers

1. Flux linkage equations

- The fluxes of the windings are:

$$
\begin{array}{|l|}
\hline \phi_{1}=\phi_{l 1}+\phi_{m} \\
\hline \phi_{2}=\phi_{l 2}+\phi_{m} \\
\hline
\end{array}
$$

- The flux linkages of the windings are:

$$
\lambda_{1}=N_{1} \phi_{1}=N_{1}\left(\phi_{l 1}+\phi_{m}\right)
$$

$$
\lambda_{2}=N_{2} \phi_{2}=N_{2}\left(\phi_{12}+\phi_{m}\right)
$$

Model of Two-Winding Transformers

1. Flux linkage equations

- The relation between the MMF, magnetic flux and permeance is as follows:
$M M F=\sum N i=\mathfrak{R} \phi=\frac{1}{P} \phi$

$$
\mathfrak{R}=\frac{1}{P}
$$

where \mathfrak{R} is the reluctance and P is the permeance.

- It can be rewritten as

$$
\phi=P \sum N i
$$

Model of Two-Winding Transformers

1. Flux linkage equations

- Substitution the permeance relation into the flux linkage expression for the primary winding yields

$$
\phi_{l 1}
$$

$$
\phi_{m}
$$

$$
\left.\begin{array}{|l}
\lambda_{1}=N_{1}\left(\phi_{l 1}+\phi_{m}\right) \\
\hline \phi=P \sum N i
\end{array}\right\} \Rightarrow \lambda_{\lambda_{1}=N_{1}\left[\left(N_{1} i_{1} P_{l 1}\right)+\left(N_{1} i_{1}+N_{2} i_{2}\right) P_{m}\right]}^{\overbrace{}}
$$

$\lambda_{1}=\left(N_{1}^{2} P_{l 1}+N_{1}^{2} P_{m}\right) i_{1}+N_{1} N_{2} P_{m} i_{2}$
L_{11}
L_{12}

$$
\lambda_{1}=L_{11} i_{1}+L_{12} i_{2}
$$

Model of Two-Winding Transformers

1. Flux linkage equations

- Similarly for the secondary winding:

$$
\lambda_{2}=N_{2}\left(\phi_{12}+\phi_{m}\right)
$$

$$
\Rightarrow \lambda_{2}=N_{2}\left[\left(N_{2} i_{2} P_{12}\right)+\left(N_{1} i_{1}+N_{2} i_{2}\right) P_{m}\right]
$$

$\Rightarrow \lambda_{2}=\left(N_{2}^{2} P_{l 2}+N_{2}^{2} P_{m}\right) i_{2}+N_{1} N_{2} P_{m} i_{1}$

L_{21}

$$
\lambda_{2}=L_{21} i_{1}+L_{22} i_{2}
$$

Model of Two-Winding Transformers

1. Flux linkage equations

- The resulting flux linkage equations for the two-winding transformers in terms of the winding inductances are:

$$
\lambda_{1}=L_{11} i_{1}+L_{12} i_{2}
$$

$$
\lambda_{2}=L_{21} i_{1}+L_{22} i_{2}
$$

- Or in the matrix form

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]
$$

where L_{11} and L_{22} are the self-inductances of the windings, and L_{12} and L_{21} are the mutual inductances between them.

Model of Two-Winding Transformers

1. Flux linkage equations

- The self-inductance of winding 1 is obtained as

$$
L_{11}=\frac{\left.\lambda_{1}\right|_{i_{2}=0}}{i_{1}}=\underbrace{N_{1}^{2} P_{l 1}}_{L_{l 1}}+\underbrace{N_{1}^{2} P_{m}}_{L_{m 1}}
$$

- Likewise for winding 2

$$
L_{22}=\frac{\left.\lambda_{2}\right|_{i_{1}=0}}{i_{2}}=\underbrace{N_{2}^{2} P_{l 2}}_{L_{l 2}}+\underbrace{N_{2}^{2} P_{m}}_{L_{m 2}}
$$

where $L_{l 1}$ and $L_{l 2}$ are the leakage inductances of the windings and $L_{m 1}$ and $L_{m 2}$ are the magnetizing inductances

Model of Two-Winding Transformers

1. Flux linkage equations

- The total mutual flux linked by winding 1 is expressed as
$N_{1} \phi_{m}=N_{1}\left(\phi_{m 1}+\phi_{m 2}\right)=L_{m 1}\left(i_{1}+\frac{N_{2}}{N_{1}} i_{2}\right)=L_{m 1}\left(i_{1}+i_{2}^{\prime}\right)=L_{m 1} i_{m 1}$
where i_{2}^{\prime} is the $2^{\text {nd }}$ winding current referred to the $1^{\text {st }}$ side, $\phi_{m 1}=N_{1} i_{1} P_{m}$ and $\phi_{m 2}=N_{2} i_{2} P_{m}$ are the portions of the mutual flux magnetized by i_{1} and i_{2} respectively, and $i_{m 1}$ is the magnetizing current in the $1^{\text {st }}$ side.

Model of Two-Winding Transformers
 Review on the Inductances

Leakage inductance of the $2^{\text {nd }}$ winding

```
Leakage inductance of the \(1^{\text {st }}\) winding
```


Self-inductance of the $1^{\text {st }}$ winding
Magnetizing inductance in $2^{\text {nd }}$ side

$$
\begin{aligned}
& L_{11}=L_{l 1}+L_{m 1} \\
& L_{22}=L_{l 2}+L_{m 2}
\end{aligned}
$$

Self-inductance of the $2^{\text {nd }}$ winding

$$
L_{12}=\frac{N_{2}}{N_{1}} L_{m 1}
$$

$$
L_{21}=\frac{N_{1}}{N_{2}} L_{m 2}
$$

$$
L_{m 2}=L_{m 1}\left(\frac{N_{2}}{N_{1}}\right)^{2}
$$

Model of Two-Winding Transformers

A Question

What would be the relation between L_{11}, L_{22}, L_{12} and L_{21} if the leakage inductances could be neglected?

With this assumption, write the following expression in terms of the magnetizing inductance in the first side.

$$
\begin{aligned}
& \lambda_{1}=L_{11} i_{1}+L_{12} i_{2} \\
& \lambda_{2}=L_{21} i_{1}+L_{22} i_{2}
\end{aligned}
$$

Model of Two-Winding Transformers

2. Voltage equations

- The terminal voltage can be expressed as the ohmic drop and the induced voltage for each winding

$$
v_{1}=r_{1} i_{1}+e_{1}
$$

$$
v_{2}=r_{2} i_{2}+e_{2}
$$

Model of Two-Winding Transformers

2. Voltage equations

- The induced voltage in winding 1 is equal to the time rate of change of the winding flux linkage:

$$
e_{1}=\frac{d \lambda_{1}}{d t}=L_{11} \frac{d i_{1}}{d t}+L_{12} \frac{d i_{2}}{d t}
$$

- Since $L_{11}=L_{l 1}+L_{m 1}$ and $L_{12}=\frac{N_{2}}{N_{1}} L_{m 1}$ it can be written as

$$
\begin{aligned}
& e_{1}=L_{l 1} \frac{d i_{1}}{d t}+L_{m 1} \frac{d}{d t}\left(i_{1}+\frac{N_{2}}{N_{1}} i_{2}\right) \\
& e_{1}=L_{l 1} \frac{d i_{1}}{d t}+L_{m 1} \frac{d i_{m 1}}{d t}
\end{aligned}
$$

Model of Two-Winding Transformers

2. Voltage equations

- Similarly the induced voltage in winding 2 is obtained as:

$$
e_{2}=\frac{d \lambda_{2}}{d t}=L_{21} \frac{d i_{1}}{d t}+L_{22} \frac{d i_{2}}{d t}
$$

- Since $L_{22}=L_{l 2}+L_{m 2}$ and $L_{21}=\frac{N_{1}}{N_{2}} L_{m 2}$ it can be written as

$$
\begin{aligned}
& e_{2}=L_{l 2} \frac{d i_{2}}{d t}+L_{m 2} \frac{d}{d t}\left(\frac{N_{1}}{N_{2}} i_{1}+i_{2}\right) \\
& e_{2}=L_{l 2} \frac{d i_{2}}{d t}+L_{m 2} \frac{d i_{m 2}}{d t}
\end{aligned}
$$

Model of Two-Winding Transformers

2. Voltage equations

$$
e_{2}=L_{l 2} \frac{d i_{2}}{d t}+L_{m 2} \frac{d}{d t}\left(i_{1}^{\prime}+i_{2}\right)
$$

$$
e_{2}=L_{l 2} \frac{d i_{2}}{d t}+L_{m 2} \frac{d i_{m 2}}{d t}
$$

- The voltage e_{2} can be referred to winding 1

$$
e_{2}^{\prime}=L_{l 2}^{\prime} \frac{d i_{2}^{\prime}}{d t}+L_{m 1} \frac{d}{d t}\left(i_{1}+i_{2}^{\prime}\right) \quad \Rightarrow \quad e_{2}^{\prime}=L_{l 2}^{\prime} \frac{d i_{2}^{\prime}}{d t}+L_{m 1} \frac{d i_{m 1}}{d t}
$$

Model of Two-Winding Transformers

2. Voltage equations

- Therefore the voltage equations are

\[

\]

Model of Two-Winding Transformers

3. Equivalent circuit

$$
v_{1}=r_{1} i_{1}+L_{l 1} \frac{d i_{1}}{d t}+L_{m 1} \frac{d i_{m 1}}{d t}
$$

$$
v_{2}^{\prime}=r_{2}^{\prime} i_{2}^{\prime}+L_{l 2}^{\prime} \frac{d i_{2}^{\prime}}{d t}+L_{m 1} \frac{d i_{m 1}}{d t}
$$

$$
r_{2}^{\prime}=r_{2}\left(\frac{N_{1}}{N_{2}}\right)^{2}
$$

$$
L_{l 2}^{\prime}=L_{l 2}\left(\frac{N_{1}}{N_{2}}\right)^{2}
$$

$$
v_{2}^{\prime}=v_{2} \frac{N_{1}}{N_{2}}
$$

$$
i_{2}^{\prime}=i_{2} \frac{N_{2}}{N_{1}}
$$

$$
i_{m 1}=i_{1}+i_{2}^{\prime}
$$

Simulation of Two-Winding Transformers 窻

- There are several ways to simulate a two-winding transformer, e.g.:
- The inputs are the primary and secondary voltages, both in the primary side.
- The outputs are the primary and secondary current, both in the primary side.

Outputs

i_{2}^{\prime}

- The states are the flux linkages of the primary and secondary windings.

λ_{2}^{\prime}

Simulation of Two-Winding Transformers 背

- It's possible to consider the flux linkage per second of the windings as state variables States $\quad \square \psi_{1} \quad \psi_{2}^{\prime}$

$$
\psi_{1}=\omega_{b} \lambda_{1}
$$

$$
\psi_{2}^{\prime}=\omega_{b} \lambda_{2}^{\prime}
$$

where ω_{b} is the base frequency at which the reactances are computed.

Simulation of Two-Winding Transformers 毅

- The voltage equations will be

$$
v_{1}=r_{1} i_{1}+\frac{1}{\omega_{b}} \frac{d \psi_{1}}{d t}
$$

$$
v_{2}^{\prime}=r_{2}^{\prime} i_{2}^{\prime}+\frac{1}{\omega_{b}} \frac{d \psi_{2}^{\prime}}{d t}
$$

- The flux linkage per second of the windings are

$$
\psi_{1}=\omega_{b} \lambda_{1}=x_{l 1} i_{1}+\psi_{m}
$$

$$
\psi_{2}^{\prime}=\omega_{b} \lambda_{2}^{\prime}=x_{l 2}^{\prime} i_{2}^{\prime}+\psi_{m}
$$

where ψ_{m} is the magnetizing flux referred to winding 1

$$
\psi_{m}=\omega_{b} L_{m 1}\left(i_{1}+i_{2}^{\prime}\right)=x_{m 1}\left(i_{1}+i_{2}^{\prime}\right)=x_{m 1} i_{m 1}
$$

and the reactances are defined as

$$
x_{l 1}=\omega_{b} L_{l 1}
$$

$$
x_{l 2}^{\prime}=\omega_{b} L_{l 2}^{\prime}
$$

$$
x_{m 1}=\omega_{b} L_{m 1}
$$

Simulation of Two-Winding Transformers 意

- The currents can be written in terms of the flux linkages

$$
\begin{aligned}
& \psi_{1}=x_{l 1} i_{1}+\psi_{m} \\
& \psi_{2}^{\prime}=x_{l 2}^{\prime} i_{2}^{\prime}+\psi_{m} \\
& \square i_{1}=\frac{\psi_{1}-\psi_{m}}{x_{l 1}} \\
& i_{2}^{\prime}=\frac{\psi_{2}^{\prime}-\psi_{m}}{x_{l 2}^{\prime}}
\end{aligned}
$$

$$
1
$$

- Using the above two expressions and $\psi_{m}=x_{m 1}\left(i_{1}+i_{2}^{\prime}\right)$ we have:

$$
\frac{\psi_{m}}{x_{m 1}}=\frac{\psi_{1}-\psi_{m}}{x_{l 1}}+\frac{\psi_{2}^{\prime}-\psi_{m}}{x_{l 2}^{\prime}}
$$

$$
\psi_{m}\left(\frac{1}{x_{m 1}}+\frac{1}{x_{l 1}}+\frac{1}{x_{l 2}^{\prime}}\right)=\frac{\psi_{1}}{x_{l 1}}+\frac{\psi_{2}^{\prime}}{x_{l 2}^{\prime}}
$$

Simulation of Two-Winding Transformers 遥

- It can be rewritten as

$$
\psi_{m}\left(\frac{1}{x_{m 1}}+\frac{1}{x_{l 1}}+\frac{1}{x_{l 2}^{\prime}}\right)=\frac{\psi_{1}}{x_{l 1}}+\frac{\psi_{2}^{\prime}}{x_{l 2}^{\prime}}
$$

$$
\square \psi_{m}=x_{M}\left(\frac{\psi_{1}}{x_{l 1}}+\frac{\psi_{2}^{\prime}}{x_{l 2}^{\prime}}\right)
$$

where

$$
\frac{1}{x_{M}}=\frac{1}{x_{m 1}}+\frac{1}{x_{l 1}}+\frac{1}{x_{l 2}^{\prime}}
$$

- The above expression states the magnetizing flux linkage per second as a function of the primary and secondary flux linkages per second.

Simulation of Two-Winding Transformers 筡息

- The voltage equation of the primary side can be expressed as follows:

$$
v_{1}=r_{1} i_{1}+\frac{1}{\omega_{b}} \frac{d \psi_{1}}{d t}
$$

$$
i_{1}=\frac{\psi_{1}-\psi_{m}}{x_{l 1}}
$$

$$
\psi_{1}=\omega_{b}\left\{\left\{v_{1}-r_{1}\left(\frac{\psi_{1}-\psi_{m}}{x_{l 1}}\right)\right\} d t\right.
$$

- Similarly for the secondary side we have:

$$
\psi_{2}^{\prime}=\omega_{b} \int\left\{v_{2}^{\prime}-r_{2}^{\prime}\left(\frac{\psi_{2}^{\prime}-\psi_{m}}{x_{l 2}^{\prime}}\right)\right\} d t
$$

Simulation of Two-Winding Transformers

- The block diagram of the simulation can be shown as

Simulation of Two-Winding Transformers 遥

- The block diagram with equations

Simulation of Two-Winding Transformers 趋

- In order to simulated the transformer, the following parameters are required:
r_{1} : the primary winding resistance in Ω
r_{2}^{\prime} : the secondary winding resistance referred to the primary
ω_{b} : the base frequency in rad/s
$x_{l 1}$: the primary leakage reactance in Ω
$x_{l 2}^{\prime}$: the secondary leakage reactance referred to the primary
$x_{m 1}$: the magnetizing reactance in the primary side in Ω

Simulation of Two-Winding Transformers 遥

- The simulation of the two-winding transformer in MATLAB/SIMULINK

Load Modelling

- It is noted that the secondary terminal voltage is not an explicit input and depends on the load connected to this terminal.
- Therefore the load should be modelled in modular form.
- Then the load model is combined with the transformer model to obtain the overall response of the system:

Load Modelling

Two Special Cases

1. Short Circuit $v_{2}^{\prime}=0$

It's straightforward to implement the short-circuit condition by setting the secondary voltage to zero.
2. Open Circuit $\quad i_{2}^{\prime}=0$

- It's not as easy as the short-circuit condition and the open-circuit secondary voltage is expressed as follows:

$$
v_{2 o c}^{\prime}=\frac{1}{\omega_{b}} \frac{d \psi_{m}}{d t}=\frac{1}{\omega_{b}} \frac{x_{m 1}}{x_{l 1}+x_{m 1}} \frac{d \psi_{1}}{d t}=\frac{x_{m 1}}{x_{l 1}+x_{m 1}}\left(v_{1}-r_{1} i_{1}\right)
$$

Load Modelling Two Special Cases

2. Open Circuit

$$
\begin{aligned}
& \psi_{2}^{\prime}=x_{l 2}^{\prime} i_{2}^{\prime}+\psi_{m} \\
& \\
& v_{2}^{\prime}=r_{2}^{\prime} i_{2}^{\prime}+\frac{1}{\omega_{b}} \frac{d \psi_{2}^{\prime}}{d t}
\end{aligned} \stackrel{i_{2}^{\prime}=0}{{ }^{i_{2}^{\prime}=0} \psi_{2}^{\prime}=\psi_{m}}
$$

$$
v_{2}^{\prime}=\frac{1}{\omega_{b}} \frac{d \psi_{m}}{d t}
$$

$$
\begin{aligned}
& \psi_{m}=x_{m 1}\left(i_{1}+i_{2}^{\prime}\right) \\
& \psi_{1}=x_{l 1} i_{1}+\psi_{m}
\end{aligned} \quad \stackrel{i_{2}^{\prime}=0}{ } \quad \psi_{m}=x_{m 1} i_{1}
$$

$$
\psi_{m}=\frac{x_{m 1}}{x_{l 1}+x_{m 1}} \psi_{1}
$$

Load Modelling

- The load can be represented by an equivalent impedance or admittance in the form of either RL or RC circuit.

Load Modelling

- Consider a specified loading of S_{L} at the rated voltage of $v_{2 \text { rated }}$.
- It can be translated into an equivalent circuit load admittance referred to the primary side:

- For lagging power factor loads, the parallel RL circuit is used.
- For leading power factor loads, the parallel RC circuit is used.

Load Modelling

Lagging power factor loads (parallel RL circuit)

$$
\left(G_{L}^{\prime}-j B_{L}^{\prime}\right)^{-1}=\left(\frac{N_{1}}{N_{2}}\right)^{2} \frac{v_{2 \text { rated }}^{2}}{S_{L}^{*}}
$$

- Assume that the conductance and susceptance are calculated based on the complex power and rated voltage
$v_{2}^{\prime}=R_{L}^{\prime} i_{R}^{\prime}=R_{L}^{\prime}\left(-i_{2}^{\prime}-i_{L}^{\prime}\right)$
$i_{L}^{\prime}=\frac{1}{L_{L}^{\prime}} \int v_{2}^{\prime} d t=\omega_{b} B_{L}^{\prime} \int v_{2}^{\prime} d t$

$$
v_{2}^{\prime}=R_{L}^{\prime}\left(-i_{2}^{\prime}-\omega_{b} B_{L}^{\prime} \int v_{2}^{\prime} d t\right)
$$

Load Modelling

Leading power factor loads (parallel RC circuit)

$$
\left(G_{L}^{\prime}+j B_{L}^{\prime}\right)^{-1}=\left(\frac{N_{1}}{N_{2}}\right)^{2} \frac{v_{2 \text { rated }}^{2}}{S_{L}^{*}}
$$

- Assume that the conductance and susceptance are calculated based on the complex power and rated voltage

$$
i_{R}^{\prime}=v_{2}^{\prime} / R_{L}^{\prime}
$$

$v_{2}^{\prime}=\frac{1}{C_{L}^{\prime}} \int i_{C}^{\prime} d t=\frac{\omega_{b}}{B_{L}^{\prime}} \int\left(-i_{2}^{\prime}-i_{R}^{\prime}\right) d t$

$$
v_{2}^{\prime}=\frac{\omega_{b}}{B_{L}^{\prime}} \int\left(-i_{2}^{\prime}-\frac{v_{2}^{\prime}}{R_{L}^{\prime}}\right) d t
$$

Core Saturation Effects

- Core saturation mainly affects the value of the magnetizing inductance and, to a much lesser extent, the leakage inductances.
- Considering the core saturation effects on the leakage inductances is complex and neglected here.
- Therefore the core saturation effects on the magnetizing inductance are only considered.
- Core saturation behaviour can be determined from just the opencircuit magnetization curve of the transformer.

Core Saturation Effects

Saturation characteristics

(a) Open-circuit curve

(b) Saturated vs. unsaturated flux linkage

Core Saturation Effects

Some of the methods to incorporate the core saturation effects in the dynamic simulation are:

1. Using the appropriate saturated value of the magnetizing reactance at each time step of the simulation.
2. Approximating the magnetizing current by some analytic function of the saturated flux linkage.
3. Using the relation between saturated and unsaturated values of the magnetizing flux linkage.

Core Saturation Effects

Method 1: Using the appropriate saturated value of the magnetizing reactance at each time step of the simulation.

- The saturated value of the magnetizing reactance $x_{m 1}^{s a t}$ can be updated using the product of the unsaturated value of the magnetizing reactance $x_{m 1}^{u n s a t}$ times a saturation factor k_{s}.

$$
x_{m 1}^{s a t}=k_{s} x_{m 1}^{\text {unsat }}
$$

- k_{s} is determined from the open-circuit curve: $k_{s}=\frac{\psi_{m}^{\text {sat }}}{\psi_{m}^{\text {unsat }}} \leq 1$
- $x_{m 1}^{u n s a t}$ is a constant value.

Core Saturation Effects

Method 2: Approximating the magnetizing current by some analytic function of the saturated flux linkage.

$$
i_{m}=f\left(\psi_{m}\right)
$$

Core Saturation Effects

Method 3: Using the relation between saturated and unsaturated values of the magnetizing flux linkage.

$$
\begin{aligned}
& \psi_{m}^{\text {unsat }}=x_{m 1}^{\text {unsat }}\left(i_{1}+i_{2}^{\prime}\right) \\
& i_{1}=\frac{\psi_{1}-\psi_{m}^{\text {sat }}}{x_{l 1}} \\
& i_{2}^{\prime}=\frac{\psi_{2}^{\prime}-\psi_{m}^{\text {sat }}}{x_{l 2}^{\prime}} \\
& \psi_{m}^{\text {unsat }}=\psi_{m}^{\text {sat }}+\Delta \psi
\end{aligned}
$$

$$
\frac{\psi_{m}^{\text {unsat }}}{x_{m 1}^{\text {unsat }}}=\frac{\psi_{1}-\psi_{m}^{\text {sat }}}{x_{l 1}}+\frac{\psi_{2}^{\prime}-\psi_{m}^{\text {sat }}}{x_{l 2}^{\prime}}
$$

$$
\psi_{m}^{s a t}=x_{M}\left(\frac{\psi_{1}}{x_{l 1}}+\frac{\psi_{2}^{\prime}}{x_{l 2}^{\prime}}-\frac{\Delta \psi}{x_{m 1}^{u n s a t}}\right)
$$

where

$$
\frac{1}{x_{M}}=\frac{1}{x_{m 1}^{\text {unsat }}}+\frac{1}{x_{l 1}}+\frac{1}{x_{l 2}^{\prime}}
$$

Core Saturation Effects

Method 3: Using the relation between saturated and unsaturated values of the magnetizing flux linkage.

$$
\psi_{m}^{\text {sat }}=x_{M}\left(\frac{\psi_{1}}{x_{l 1}}+\frac{\psi_{2}^{\prime}}{x_{l 2}^{\prime}}-\frac{\Delta \psi}{x_{m 1}^{u n s a t}}\right)
$$

where

$$
\frac{1}{x_{M}}=\frac{1}{x_{m 1}^{u n s a t}}+\frac{1}{x_{l 1}}+\frac{1}{x_{l 2}^{\prime}}
$$

- Comparing to the case with no saturation effects, the only additional term appeared in the above expression is:
$\frac{\Delta \psi}{x_{m 1}^{\text {unsat }}}$
- Therefore similar model with minor modification is used.
- Only $\Delta \psi$ has to be obtained.

Core Saturation Effects

Block diagram of Method 3

Now we need to find the way to represent the saturation block

Core Saturation Effects

Method 3: It is required to compute $\Delta \psi$ from $\psi_{m}^{s a t}$.
The approaches to represent the saturation block are as follows:

1. Using a look-up table and interpolation technique

input	$\psi_{m}^{\text {sat }}$	-	-	-	-
output	$\Delta \psi$	-	-	-	-

2. Approximate analytic functions
2.1. Three-segment linear-exponential approximation
2.2. Three-segment linear approximation

Core Saturation Effects

2. Approximate analytic functions
2.1. Three-segment linear-exponential approximation

Linear region ($\psi_{m}^{\text {sat }}<\mathrm{B}_{1}$):

$$
\Delta \psi=0
$$

Knee region ($\mathrm{B}_{1}<\psi_{m}^{\text {sat }}<\mathrm{B}_{2}$):

$$
\Delta \psi=a e^{b\left(\psi_{m}^{s t a t}-\mathrm{B}_{1}\right)}
$$

Fully saturated region ($\psi_{m}^{\text {sat }}>\mathrm{B}_{2}$):

$$
\Delta \psi=\mathrm{A}_{2}\left(\psi_{m}^{s a t}-\mathrm{B}_{2}\right)+\Delta \psi\left(\mathrm{B}_{2}\right)
$$

where $\Delta \psi\left(\mathrm{B}_{2}\right)=a e^{b\left(\mathrm{~B}_{2}-\mathrm{B}_{1}\right)}$

Core Saturation Effects

2. Approximate analytic functions
2.2. Three-segment linear approximation

$$
\Delta \psi=\mathrm{A}_{1}\left(\psi_{m}^{\text {sat }}-\mathrm{B}_{1}\right)+\mathrm{A}_{2}\left(\psi_{m}^{\text {sat }}-\mathrm{B}_{2}\right)
$$

where

$$
\begin{aligned}
& \mathrm{A}_{1}= \begin{cases}\text { slope } 1 & \text { if } \\
0 & \psi_{m}^{\text {sat }}>\mathrm{B}_{1} \\
\text { otherwise }\end{cases}
\end{aligned}
$$

Core Saturation Effects

2. Approximate analytic functions

- Since ψ_{m} is alternating, saturation for negative ψ_{m} must be taken care of by a similar approximation in the third quadrant.
- In the third quadrant the slope of the linear approximation remains the same but the sign of B_{1} and B_{2} changes.

Core Saturation Effects

Implementation in MATLAB/SIMULINK using Look-up Table

Three-Phase Connections

- The generation, transmission and distribution of AC electric power systems are mostly in three-phase.
- When the three-phase system is operating under balanced conditions, it can be represented by a single phase equivalent circuit.
- For unbalanced operating conditions, the three-phase system must be represented as it is.
- The operating characteristic of a 3-phase transformer depends on both winding connections and the magnetic circuit of its core.
- Here only the winding connection effects are considered and the effects of the magnetic circuit of the core (e.g. mutual effects of the primary windings when share a common core) are not considered.

Three-Phase Connections

Y-Y Connection

ground
point
Voltage
expressions

$$
\begin{array}{ll}
v_{A G}=v_{A O} & v_{A N}=v_{A G}-v_{N G} \\
\hline v_{B G}=v_{B O} & v_{B N}=v_{B G}-v_{N G} \\
\hline v_{C G}=v_{C O} & v_{C N}=v_{C G}-v_{N G} \\
\hline
\end{array}
$$

$$
v_{N G}=R_{N}\left(i_{A}+i_{B}+i_{C}\right)
$$

Three-Phase Connections

Y-Y Connection

Equivalent circuit representation of one transformer in detail

Three-Phase Connections

Y-Y Connection

$$
\begin{gathered}
\text { Simulation in } \\
\text { MATLAB/SIMULINK } \\
\begin{array}{c}
v_{A N}=v_{A G}-v_{N G} \\
\hline v_{B N}=v_{B G}-v_{N G} \\
\hline v_{C N}=v_{C G}-v_{N G} \\
\hline v_{N G}=R_{N}\left(i_{A}+i_{B}+i_{C}\right) \\
\hline
\end{array} \\
\hline
\end{gathered}
$$

Three-Phase Connections

Y-Y Connection

Inside the Aa_unit

Three-Phase Connections

Y-Y Connection

Inside the Ref_Load an

Three-Phase Connections

Δ-Y Connection

$$
v_{A B}=v_{A O}-v_{B O}
$$

$$
i_{A}=i_{A B}-i_{C A}
$$

$$
\begin{array}{|l|}
\hline v_{B C}=v_{B O}-v_{C O} \\
\hline v_{C A}=v_{C O}-v_{A O} \\
i_{B}=i_{B C}-i_{A B} \\
\hline
\end{array}
$$

Three-Phase Connections

$\Delta-Y$ Connection

Equivalent circuit representation of one transformer in detail

Three-Phase Connections

$\Delta-Y$ Connection

Simulation in MATLAB/SIMULINK

$$
\begin{aligned}
& v_{A B}=v_{A O}-v_{B O} \\
& \hline v_{B C}=v_{B O}-v_{C O} \\
& \hline v_{C A}=v_{C O}-v_{A O} \\
& i_{A}=i_{A B}-i_{C A} \\
& i_{B}=i_{B C}-i_{A B} \\
& \hline i_{C}=i_{C A}-i_{B C} \\
& \hline
\end{aligned}
$$

