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Mathematical Model of Dynamic Systems

A mathematical model of a dynamic system is defined as a set
of equations that represents the dynamics of the system
accurately or at least fairly well.

Note that a mathematical model is not unique to a give
system.

A system may be represented in many different ways and
therefore may have many mathematical models.

The dynamics of many systems, whether they are mechanical,
electrical, thermal, economic, biological and so on may be
described in terms of differential equation using physical
laws.

For example Newton’s law for mechanical systems or
Kirchhoff’s laws for electrical systems.
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Simplicity vs. Accuracy

Increasing complexity of a model can improve the accuracy.

There should be compromise between the simplicity and
accuracy of the model.

Therefore it may be necessary to ignore some inherent
physical property.

The ignored properties should not have significant effect on
the model response.
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Time Domain Modelling
1. Differential equations

For a SISO linear time-invariant (LTI) system, the model can be
represented by the following differential equation:
dny dn—ly dn—2y dy dmu dm—lu

+ +a,——+---+a ,—+ay=>b +b
dt" aldt”‘1 > dt"? g T O Y T B g o g

+---+b1?j—l:+bou

where Yy is the output and u is the input.

If one or more coefficients of the above differential equation
are time-dependent the system is a SISO linear time-varying
(LTV) system:

d"y d"ty d" %y dy d™u d™u du
+‘—+a ——+---+a,_,—+ay=b —+b  ——+---+b—+byu
dt" dt"* 7 dt"? w1 O = e g o dt
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Time Domain Modelling
1. Differential equations

* The following differential equation is, for example, for a SISO
nonlinear time-invariant system:
—+ 6%+3y:5u
dt

* The following differential equation is, for example, for a SISO
nonlinear time-varying system:

3 2.\?
d—¥+4 d_zy +y+3y:5u
dt dt dt

* Itisimpossible to represent a general differential equation for
nonlinear systems.
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Time Domain Modelling
1. Differential equations

Example 1: In the following RC circuit express the relation between
the input (source) voltage and the output (capacitor) voltage.

KVL:

RI+V, =V,

RC dv,
dt

+V, =V

> )

dv 1 1

C —

= )
dt RC RC

It is a linear time-invariant system.
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Time Domain Modelling
1. Impulse response

* Having the impulse response, g(t), the response of the system,
y(t), with any other input, u(t), can be obtained:

y(®) = [ gt-2)u(r)dz

5(t)

Impulse Impulse
input response
>t Process >
o(t) g(t)
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Time Domain Modelling
3. State space equations

e State: The state of a dynamic system is the smallest set of
variables (called state variables) such that the knowledge of
these variables at t=t,, together with the knowledge of the
input for t>t, , completely determines the behaviour of the
system for any time t>t,,

* State vector: if n state variables are needed to completely
describe the behaviour of a given system therefore:

X:[Xl Xp oo Xn]T

10
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Time Domain Modelling &
3. State space equations

* State space equations can be defined for both linear and
nonlinear with time-invariant or time-varying systems:

Time-invariant Time-varying

% = Ax(t) + Bu(t) x = A(t)x(t) + B(t)u(t)
y = Cx(t) + Du(t) y = C(t)x(t) + D(t)u(t)
Nonlinear % =f(x(t), u(t)) % =f(x(t), u(t),t)
y =g(x(),u(t)) y =g(x(),u(t),t)

where X is the state vector, U is the input vector and y is the

output vector y
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Frequency Domain Modelling
1. Frequency response

* The input to the system is a sinusoidal signal in which the
frequency is variable within a range:

u, = Asin(wt) welo,. o]

min !

* The corresponding output

y,=B, Sin(a)t +¢)w)

Input

Process

12
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Frequency Domain Modelling
2. Transfer function

The transfer function of a linear, time-invariant differential
equation system is defined as the ratio of the Laplace
transform of the output to the Laplace transform of the input
under the assumption that all initial conditions are zero:

Ly _Y(s)
6= L) MNVS
Process >

u(t) y(t)

U (s) Y (s)

13
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Frequency Domain Modelling
2. Transfer function L{dy”}

dt"
* For the following differential equation which is for LTI system
dy  d™'y d"?y dy d™u d"u  du

+a,——+a,——+--+a ,—+ay=b —+b , ——+---+b,—+byu
ar At % g g Y T e TP e bldt 0

e The transfer function is as follows

Y(s) bs"+b s"'+---+bs+b,
G(S): U( ~n n-1 n—2
s) s"+as" +a,s"?+---a S+a

o - 0
Process >
u(t) y(t)

U (s) Y(s)

14
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Frequency Domain Modelling
2. Transfer function

The properties of a transfer function (TF) are as follows

1. TFis only defined for linear time-invariant systems.

In TF calculation the initial values are set to zero.

3. TFis a property of a system itself, independent of the
magnitude and nature of the input or driving function.

4. TFisindependent of variable t and the only variable is s.

o - 0
Process >
u(t) y(t)

U (s) Y(s)

N

15
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Frequency Domain Modelling
2. Transfer function

Example 2: In the following RC circuit obtain the transfer function
where the input is the source voltage and the output is the
capacitor voltage.

dv 1 1

16
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Frequency Domain Modelling
2. Transfer function

Example 3: Consider the following satellite attitude control system.
The diagram shows the control of only the yaw angle 6. In the
actual system there are control about three axes. Small jets apply
reaction forces to rotate the satellite body into the desired attitude.
The two skew symmetrically placed jets denoted by A or B operate
in pairs. Assume that each jet thrust is F/2 and a toque T=Fl is
applied to the system. The jets are applied for a certain time
duration and thus the torque can be written as T(t). The moment of
inertia about the axis of rotation at the center of mass is J.
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Frequency Domain Modelling
2. Transfer function

Example 3: Obtain the transfer function of this system by assuming
that torque T(t) is the input and the angular displacement & (t) of
the satellite is the output.

Applying Newton’s second law yields :
d*¢ N
J —2:T .
dt
Taking the Laplace transform

Js?O(s) =T(s)

The transfer function is

Center of mass

O(s) 1 F ¥ Nl
G (S) - B 2 2 h \ Reference
T(s) Js '
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Frequency Domain Modelling
2. Transfer function

Convolution integral: For a linear, time-invariant system the
transfer function is

It means that the output can be written as the product of the
Laplace of input and the transfer function

Y(s)=G(s)U(s)

Note that the multiplication in the complex domain is equivalent
to convolution in the time domain.

y(t) =I; g(t—-7)u(r)dz  where g(t) is the impulse response.

19
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A Point

The Laplace transfer of the impulse response is the transfer
function.

Frequency domain Time domain

Transfer function Impulse response
_Y(s) _
SE)=30) 9(t) = L{G(s);
Y(s)=G(s)U(s) y(®) = [ g(t-r)u(z)dz
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Graphical Representation
1. Block diagram

A block diagram of a system is a pictorial representation of the
functions.

The arrows entering a block are inputs and those leaving a block
are outputs.

Note that signal can pass only in the direction of arrows.

Input Transfer Output
function

U (s) G(s) Y (s)

21
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Graphical Representation
Block diagram of closed-loop systems

Summing point

Branch point

Summing
point

Branch
point

G(s) @ >

22
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Graphical Representation
Block diagram of closed-loop systems

* Loop transfer function or open-loop transfer function is

defined as:
B(s)
ERREOLD
 Feedforward transfer function is defined as:
C(s)
E s)_G(S)

R(s) E(s) C(s)
G(s) ® >
B(s)
23
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Graphical Representation
Block diagram of closed-loop systems

C(s)

Closed-loop transfer function: R(s) =7

C(s)=G(s)E(s)
- Cls)=GOIRE)-HOK(E)] = S-S

£(s)= R(s)-B(s) R(S)  1+G(s)H(s)

=R(s)-H(s)C(s) _ Closed loon TF = Feedforward TF
b=y Loop TF

R(s) E(s) C(s)
G(s) @ >
B(s)
24
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Graphical Representation
Block diagram of closed-loop systems

Example 4: Draw the block diagram of the following RC circuit

.V, =V, —_—
=0 V() 1 |6
2 —
1(s)= Vy(s)-V.(s) —
R v.

v, == [idt _

C s | 1 | w©

1 >

V.(s)=—1
(s) Cs (s) Cs

V. (s) 1| e Ve®)
R Cs I

25

2017 Shiraz University of Technology Dr. A. Rahideh



Graphical Representation

Block diagram of closed-loop systems
Rules of block diagram algebra

Original Block Diagrams Equivalent Block Diagrams
A AG AG-B g
G - A G - AG-B
1
£ 1
A AG A AG
2 —r G - ———— G ———
AG AG
=1 -—
A AG A AG
1 G -— G -
3 R L ]
_
AG LG A
A B
G] - A 1 B
4 —- G: {‘}'2 i GI T—
G,
A G B
P
5 ! A G, B
|7 ¢G [
& | 26
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Graphical Representation
2. Signal Flow Graph (SFG)

Signal flow graph is a simpler representation of block diagram.

For example consider the following block diagram

R(s) E(s) . | C(S)>

(s)

]
B(s)

The signal flow graph of the above block diagram is shown below

1 E
’SS) G"(s) . 1 c(s)

R(s) O—» K‘/ >

-H(s) 27
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Graphical Representation
2. Signal Flow Graph (SFG)

The properties of a signal flow graph (SFG) are as follows

SFG is only defined for linear time-invariant systems.

In SFG the nodes are used as variables.

The flow directions are shown by arrows.

Input node is the node from which only one branch is leaving.

Output node is the node in which only one branch is entering.

Forward path is a set of branches starting from input node and
ending at the output node without passing a node twice.

ounsLNE

1 EGB) G(s)
o -

1
R(s) O—> u >

-H(s) 28

C(s)
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Graphical Representation
2. Signal Flow Graph (SFG)

The properties of a signal flow graph (SFG) are as follows

7. Forward path gain is the multiplication of the gains of the
forward path branches.

8. Loop is a closed path starting from any node and ending at
that node without passing any other node twice.

9. Loop path gain is the multiplication of the gains of the loop
branches.

1 EGB) G(s)
o -

R(s) O—> \‘j

-H(s) 29

C(s)
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Graphical Representation
2. Signal Flow Graph (SFG)

SFG Algebra
* The value dedicated to a node is equal the summation of the
signals entering the node.

Y1 = 84gYe T s Ys T Y,

e The value dedicated to a node is transferred to all branches
leaving that node.

Y =apY,

Y; =a3Y;

30
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Graphical Representation
2. Signal Flow Graph (SFG)

SFG Algebra
* Parallel connection: The parallel branches connecting two

nodes in the same direction can be replaced by a single branch
where its gain is equal to the summation of all parallel
branches:

Y2
>
a, +a,+a,

31
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Graphical Representation
2. Signal Flow Graph (SFG)

SFG Algebra
* Series connection: The series branches connecting two nodes
in the same direction can be replaced by a single branch
where its gain is equal to the multiplication of all series

branches:
Y1 Y, Y1 . Y,
—O0—>—O0—> —> 28,8,
al az a3

32

2017 Shiraz University of Technology Dr. A. Rahideh



Graphical Representation
2. Signal Flow Graph (SFG)

Example 5: draw the signal flow graph of the following block
diagram:

33
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Solution 5:

Graphical Representation
2. Signal Flow Graph (SFG)

>

G,

R e
G,
H, j¢&——
1 C
>—0

34
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Graphical Representation
Mason’s Rule

 Mason’s rule is used to obtain the closed-loop transfer function from
block diagram or signal 1;Iow graph:

cls)_ &P

Closed —loop TF = =

R(s) A
Where Azl_ZLi+ZLiLj_ZLiLle+...
Pi the k-th forward-path gain
N the number of forward paths
> L the summation of all single loops

Y LL, the summation of nontouching-loop gains taken 2 at a time
S LLL the summation of nontouching-loop gains taken 3 at a time

A is A minus the summation of the gains of the loops that touch
the k-th forward path. 35

k
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Graphical Representation
2. Signal Flow Graph (SFG)

Example 6: find the closed-loop transfer function of the

following SFG. N
) 2P

Closed —loop TF = ¢ =

R(s) A

There are two forward paths

p, =GG, A =1
p2 :C;3 AZ :1+GlH1
There are three loops which are all touching
L, =-G,H, |
C(s) GG,+G,+H,GG,
|_2 :_G2 >‘A=1+GlH1+G2 +GlGZH2 R(S)_l-l—GlHl-l—Gz-l—GleHz
L, :_GleHz _ 36
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Graphical Representation
2. Signal Flow Graph (SFG)

Example 7: find the closed-loop transfer function of the

following SFG. N
) 2P

Closed —loop TF = ¢ =

R(s) A
There are two forward paths g El G’s g
p, =G,G,G, A =1+H,
p,=GG,G,G. A =1 - H,

There are three loops which two of them are nontouching

- —G,H
Ll o I—1|—2262H1H2

L, =-H,
L, =-G,G,H,

37
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Graphical Representation
2. Signal Flow Graph (SFG)

Example 7: find the closed-loop transfer function of the

following SFG.

Closed —loop TF =

C(s) G,G,G.(1+H,)+G,G,G,G,

R(s) 1+G,H,+H,+G,G,H,+G,H,H,

\ 4
(o N@]

A=1+G,H,+H, +G,G,H, +G,H,H,

38
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Time Domain Modelling
State space equations

e State: The state of a dynamic system is the smallest set of
variables (called state variables) such that the knowledge of
these variables at t=t,, together with the knowledge of the
input for t>t, , completely determines the behaviour of the
system for any time t>t,,

* State vector: if n state variables are need to completely
describe the behaviour of a given system therefore:

X (t)
X(t)= Xzz(t)

o)

39
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Time Domain Modelling &
State space equations

* State space equations can be defined for both linear and
nonlinear with time-invariant or time-varying systems:

Time-invariant Time-varying

% = Ax(t) + Bu(t) x = A(t)x(t) + B(t)u(t)
y = Cx(t) + Du(t) y = C(t)x(t) + D(t)u(t)
Nonlinear % =f(x(t), u(t)) % =f(x(t), u(t),t)
y =g(x(),u(t)) y =g(x(),u(t),t)

where X is the state vector, U is the input vector and y is the

output vector
40
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Time Domain Modelling
State space equations

Example 8: Write the state space equations for the following
electric circuit. The output is the capacitor voltage.

x = AX(t) + Bu(t) &» f(5|5(5\——
y = Cx(t) + Du(t) i ;,

The input of the systemis u=V, _

In electric circuits the state variables are normally defined as
the current of the inductors and the voltage of the capacitors

therefore: X, =i X_|:X1j|_|:i }
X2 =V X2 Vc

The output of the systemis y=Vv,

41
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Time Domain Modelling
State space equations

Solution 8: —

KVL
i di d 1 R. 1
V.=RI+L—+V ‘ — =—V.—|——V
! d  °© d L' L L °

The relation between the voltage and current of the capacitor

dv. 1

=Ch ) i C

42
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Time Domain Modelling
State space equations

X = Ax(t) + Bu(t)
y =Cx(t) + Du(t)

43
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Solution 8:

Time Domain Modelling
State space equations

X

X = AX(t) + Bu(t)
y = Cx(t) + Du(t)

X, =V

c

X _% _% X, 1 di
|:. :| 1 |: :|+ L |V X I X dt
L% = 0 [L% 0 X= = X=| "*|=
C | X2 Vc Xz dV
X dt
—y=[0 1] *|+[0]v, _ - -
-0 4% |+l y-u,
L
A=l B=|| c=[0 1] D=|[0]
— 0 0
i C 44
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Time Domain Modelling
State space equations (dimensions)

* Assume a system with n state variables, p inputs and g

outputs, i.e. "
X e R™ ue R y e R

X = Ax(t) +Bu(t)
y =Cx(t)+ Du(t)

* The dimensions of the matrices/vectors in the state-space
equations are as follows

AeR™ BeR™P

Ce R+ D e R*P

45
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Time Domain Modelling

Differential equations to State space equations

* Assume a system with the following differential equation:
y® +ay"™ +a,y"? +...+a _y'+ay=bu
* Note that there is no derivative of input.
* The corresponding state-space equations are obtained as
X =Yy -
X, =y =X
X, =V =X,

X =Y =%

(2
Xn—l T y o Xn—2
X, =y" Y =% ¢ =y

n 1 EEpy X =Y
(n) _ (n-2) (n-1)

y"r=-ay—a,y -y —ayt C+bu 46

——a,X,  —a X, +bu
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Time Domain Modelling

Differential equations to State space equations

vy +ay"+a,y"?+...+a _y'+ay=bu

X1 = X2
Xy = Xq
X3 =X
g .
Xn—l = Xn
\).(n =, X —a g X, — Ay o X3 — =8, X  — X +bu
i X, 117 0 0]
Companion form| x, 0 0
X 0 0
° = Cu
Xn—l
_Xn_ __an —ad,; —a., - —q _al__xn_ _b_ 47
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Time Domain Modelling

Differential equations to State space equations

y(n)_i_aiy(n—l)_|_a2y(n—2)_|_..._|_an_1y'+any:bu

X, 0 1 0 0 X, 0
X, 0 1 0 X, 0
X5 | _ 0 0 1 0 X3 N 0 .
: 0 :
X 4 0 0 0 0O O (N 0
B Xn ] __an —ad,; —a., —a, _al_ | X, ] _b_
_Xl_
X
=y mmm) y=[L 0 - 0]
B 48
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Time Domain Modelling

Differential equations to State space equations

Example 9: Obtain the state-space equation of the following differential
equations

3 2 X =

d—¥+2d 2y+5dy—7y=3u(t) 1=
: dt dt dt X, =y =%
%= a, =9 3 =—1 b=3 X=y=X

x| [0 1 0][x] [0
X, =0 0 1 ||x |+/0]u
Xq [ =5 =2|| X | |3

y=[ 0 0] x, |+[0]u

(n) (n-1) (n-2) r _
y*r+ay T +ay T +--+a, Yy +ay=bu 4
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Solution of State-Space Equations

Homogeneous case: no input  x(t)=Ax(t)

Taking the Laplace transform yields

sX(s)-x(0)=AX(s) mmEp sX(s)-AX(s)=x(0) mm) (sI-A

~
X
—~
w
~—
Il
Pa
—
o
~

X 1 0 - 0
B X(s)=(s1-A'x0) = x(t)=L(s1-A)x0)] .
0 0 1
L {(sl —A)_l}z (p(t) is the state-transfer matrix # X(t)= qa(t)X(O)
p(t)=e"

2017 Shiraz University of Technology Dr. A. Rahideh



Solution of State-Space Equations

Inhomogeneous case: with input x(t)= Ax(t)+Bu(t)

Taking the Laplace transform yields
X(s)-x(0)=AX(s)+BUGS)  mp  (s1-A)X(s)=x(0)+BU(s)
=) X(s)=(s1-A)X(0)+(s1 - A)*BU(S)

B x(t)=L{(61-A)X(0)+(s1 -A)"BU(S)

m)

X(t)= g (t)x(0)+ Iot o(t—7)Bu(r)dr

L RORO)= [ -0 6)dr 5
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Solution of State-Space Equations

Example 10: In the following equations obtain X; and X, if
the input is a unit step.

L)((j } {—02 _13}&} * E} u(t) x(0)=-1 X,(0)=0

Unitstep U (S): 1
S

X(s)= (sl —=A)"x(0)+ (sl —A)"BU(s)

X(t)=L{(s1 — A)*x(0)+ (sl —A) "B U(s)f

52
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Solution of State-Space Equations
Solution 10: Kj{_oz _13}{)(1}{2}“(0 X(O){_Ol} U(S):%

X(s) = (s1-A)'BUGS)
(s1-A)= S((l) 2]_£—02 —13}(; s_+13j

S+3 1
(sl-A)'= 1 S+3 1) | (s+D(s+2) (s+1)(s+2)
s?+3s+2| =2 s ~2 S
(s+1)(s+2) (s+1)(s+2)
S+3 1 S+3

] -1 o
(s1-A)'x(0)=| +DE+D) (+D6+2) (O): (s+1(s+2

(s+1)(s+2) (s+1(s+2) (s+1D(s+2) 53
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Solution of State-Space Equations

Solution 10: Kj{_oz _13}{2}{2}”(0 X(O){_Ol} U(S):%

X(s) = (sl-A)'x(0) + ((sl-A)"BU(s)

S+3 1 1
(sl-A)'B= (s+1(s+2) (s+D(s+2) (Oj_ (s+D(s+2)
) 2 S 1) S
(s+D(s+2) (s+D(s+2) (s+1)(s+2)
1
(sl —AY*BU(s)= S(s +1i(s+2)
(s+1)(s+2)

54
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Solution of State-Space Equations
Solution 10: Kj{_oz _13}{2}{2}”(0 X(O){_Ol} U(S):%

X(s) = (sl-A)"'BU(s)

—(s+3) 1 ~s°—3s+1
X(s) = | 6+DE+2) | s+ | _ | s(s+)(s+2) | G,
2 1 3 G,
(s+1)(s+2) (s+1)(s+2) (s+1D(s+2)
Using partial fraction expansion
-s°-3s+1 A B C 05 -3 15
1: = —+ = —+ +
s(s+1)(s+2) s s+1 s+2 s s+1 s+2
3 A B 3 -3
2 = = + = +
(s+1(s+2) s+1 s+2 s+1 s+2 55
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Solution of State-Space Equations

X

o A ) o

1
XZ

Solution 10: {

X(s) = (sl-A)'x(0) + (sI-A)'BU(s)

Ll{g} =bu(t)
05_3 15 S
X(S)= S 35 +1 33+2 L‘l{i}:be_atU(t)
s+1_s+2 S+a

x(t)=L{(s1 — A)*x(0)+ (sl —A) "B U(s)f

(%)) ((05-3e"+1.5e Ju(t)
X(t)_(xz(t)j _( (3e‘t —3e‘2t) u(t) )

56
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Time Domain Modelling

Differential equations to State space equations

* Assume a system with the following differential equation:
y(n) _|_a1y(n—1) +a2y(n—2) +"'+an—1y’+any _ bO u(n) _|_b1u(n—1) +"'+bn_1U’+an

Note that there are derivatives of input.
The corresponding state-space equations are obtained as

y =X+ U - X =Y—pu ‘ X =Y— L :
. . ‘ X1=X2+:Blu
X, = y_ﬁou_ﬁlu

o o ) X, = X, + S,U
=~ i~ - B0 TR

Xo1 = y(n—2) _,Bou(n_Z) _,81u(n_3) — = fU = f U — Xog =X + f U

1 1 ) : K =7
Xn:y(n )_:BOu(n )_ﬂlu(n ) n—2u_an—1u — Xn .

Y
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Time Domain Modelling

Differential equations to State space equations

To obtain the original differential equation the following relations
should be considered:

fo=b,
B.=b,~fa,

B, =b, - fizs— fi2y

By =D - B2~ B2, ~ firds

,Bn—1 = bn—l - ﬁn—zal - ﬂlan—Z - ﬂoan—l

ﬂn - bn _ﬂn—lal _”°_ﬂ1an—1 _IBOan
The last equation is now obtained

X, = —a, X — A, X, ==X — X "‘:Bn u

n
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Time Domain Modelling
Differential equations to State space equations
y»ray"P ra,y"? +.ova y+ay=bu™+bu"+.-.+b U +bu

(%, =X, + AU
X, = X3 + S,U

X; =X, + fB3U
3 .

Xn—l = Xn +ﬁn—1u

\ Xo = =8, X — 8, 1 X =&, ,Xg = —8,X, 4 —a X, + U
X, 0 B
Companion forn| x, 0 B,
X3 | | O s
Xn—l O :Bn—l
| Xn 1 L a, —a,; —a., —a, _ai_ | X, 1 L an i 59
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Time Domain Modelling

Differential equations to State space equations

yPray"™P ra,y"? +.ova y+ay=bu™+bu" +...4b U +bu

X, 0 1 0 0 X, oA
X, 0 1 0 X, b,
X 0 0 0 1 0 X
= . ° ol '8,3 u
: 0 : :
Xn—l O O O 1 Xn—l ﬂn—l
_Xn_ __an —a,; —a., - —q _al__xn_ _ﬂn_
_Xl_
X
y=x-+4U ) y=[t 0 - 0] 7 |+Au
L% ] 60
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State-Space Equations

Example 11: Represent the state-space equations in the
companion form for the following transfer function.

25+3
s +4s+2

G(s) =

First let express the differential equation

Y (s) 25+3 d’y dy du
G(s) = = +4—242y=2—+3u
) U(s) s°+4s+2 ) et Y=y
a =0 a, =4 a, =2 b, =0 b=0 b,=2 b,=3

y(n) _|_a1y(n—1) +a2y(n—2) +"'+an_1y’+any:b0u(n) _I_blu(n—l) +--°+bn_1u'+bnu
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State-Space Equations

Solution 11: VL SPEPL LY

dt® dt dt
=0 a,=4 a, =2 b, =0 b,=0 b,=2 b, =3
ﬁ0=b0=0

181 :bl_ﬂoa1 =0
ﬂz :bz _ﬂlai_ﬂOaZ =2
133 = b3 = B3 — fa, _,Boa3 =3

62

2017 Shiraz University of Technology Dr. A. Rahideh



State-Space Equations to Transfer Function

0

x=Ax(t)+But) D) (sl —A)x(s)=>g6{+|3u(s)
y = Cx(t) + Du(t) ‘ Y(s)=CX(s)+DU(s)

(1)

(2)

(1) X(s)=(sl-A)"BU(s) (3)

(2) & (3) Y(s)=C(sl-A)"BU(s)+DU(s)

=
—

—> %:c(sl ~A)'B+D
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Modelling of Electrical Systems

The fundamental law governing the electrical system is KVL &

KCL.
 Resistors
R
AN\N _Ri
— Vo(t)=RI,(t
= (0=Ri0)
 |nductors
L di
v, (t)=L—+=
— KGW L() dt
I v, —
e Capacitors
C dv
C
¥ ic(t)=
—i—> | | dt
¢ + Vo — 64
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Modelling of Electrical Systems

 Example 12: Obtain the transfer function of the following electric
circuit if the voltage is the output and the current source is the
input.
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Modelling of Electrical Systems

e Solution 12: iRl iL l iC l ¥
Vv

i CA) R L C V,

KCL

.. .. Y 1 et dv

I =1, +1, +1 =9 4 0

St )| 2| vdt+C
Taking the Laplace transform

Ii(s):(%+|—is+Cs)vo(s) — \ll(:((ss)) i 1

Cs®+ =S+
R L
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Modelling of Mechanical Systems

 The fundamental law governing the mechanical system is
Newton’s second law. Z F —ma

 Assume a force, F, is exerted on a body with mass of m that
causes the body moves on a surface with viscous friction
coefficient f.

 The mathematical model of the system can be expressed as

YF=ma =) F-f =mx mm) F-Sx=mX
— F=mX+/X mmp F(S)z(msz+,6’s)x(s) —> Xg;: 1

F s(ms + 3)

&F
f 67
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Mechanical Elements

e Mass without friction
|—> X

Els ;

Where m is the body mass.

m X

e Mass with friction

F=mX+ /X
E“F
f

f
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Mechanical Elements

Spring )
l |—> X
4__: 1Cspring — k X
fspring|

Where K is the spring constant.

LT

W_l
f
spring

1:spring =K (X2 - Xl)
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Mechanical Elements

 Dashpot
B
<+
fdashpot'

Where B is the dashpot viscous friction coefficient.

1:dashpot =B (XZ B Xl)

X B X,
— >
—

dashpof
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Modelling of Mechanical Systems

Example 13: Obtain the governing dynamic equation of the following
system in which the bodies move on a frictionless surface.

71
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Modelling of Mechanical Systems
Solution 13: —» x — X,

72

2017 Shiraz University of Technology Dr. A. Rahideh



Modelling of Mechanical Systems

Solution 13:

B
l

YF=m5% mm=p k(x,

|
m,
L
B
> k(xz_xl)
> B(XZ_Xl)
— %)+ B(X, =% )=m, X, (2)
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Modelling of Mechanical Systems

Solution 13: —» X > x,
k
$ F
‘ m, m,
I_.
B
/ F—k(Xz—Xl)— B(Xz_xl):mz X, (1)
k(X2 — X1)+ B(Xz — Xl): m, X (2)

Taking the Laplace transform vyields:

-

—(Bs+k)X1(s)+(m232+Bs+k)X2(s)= F(s) (1)
(mls2 + Bs+k)X1(s)—(Bs+k)X2(s):O (2)
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Mechanical Elements
 Moment of inertia

Tf\ ® T=34
~’ )
J 0 oa=cwm=0

where J is the moment of inertia of the body, T is the torque
exerted on the body, & is the angular position, @ is the angular
velocity and « is the angular acceleration.
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Mechanical Elements
e Spiral Spring

D T.. =k@

spring

sprlng

Where K is the spring constant.
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Mechanical Elements
Rotational dashpot

B 0
A

‘ .
U Tdashpot =B 9
Td

ashpot

Where B is the dashpot viscous friction coefficient.
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Mechanical Elements

 Example 14: Derive the governing equations of
the following system

1)kel

f\a)
W/“JQ

78
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Mechanical Elements
e Solution 14:

B ka\ W
VAt avay

Based on Newton’s second law we have
YT=J0 ®) T_-BH-kO=J0

Taking the Laplace transform ( )
o\s 1
T(S):(J52+Bs+k)9(s) —> T(s): (J32+Bs+k)
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Mechanical Elements
e Solution 14:

B ka\ w
VAt avay

If the output is rotational velocity

0o=6  mh  Qs)=56(s)

Q(s) S

=) ﬂ:(332+83+k)
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o

y

Analogy between Mechanical and %
Electrical Systems

Electrical Translational Rotational Mechanical
systems Mechanical Systems | Systems

Current (1) Force (F) Torque (T)

Voltage (e) Velocity (V) Angular velocity (®)
Magnetic flux (¢) Displacement (X) Angular position (0)
Resistor (R) Dashpot (B 2 1/R) Dashpot (B 2 1/R)
Inductor (L) Helical spring (k 21/L) Spiral spring (k 21/L)
Capacitor (C) Mass (M) Moment of inertia (J)
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Modelling of Mechanical Systems

Example 15: Obtain the governing dynamic equation of the following
system in which the bodies move on a frictionless surface. Also draw
the electrical analogy.

MOUOUOMVNANNANNNNN

82
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Modelling of Mechanical Systems

Solution 15:
P k
4—00C
/]

/]
/
/
/|
yd
yd
/
K X,

Z:F:mzi('2 ‘
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Modelling of Mechanical Systems

Solution 15:

k
V00

|—> X, |—>X1

NMOUOUOMNANNANNNY

Y F=m¥% =)

F - Bz (X1 - Xz)_ lel =mX

B.X

84
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Modelling of Mechanical Systems

Solution 15: — x, —> X

P k
00
yd
yd
Z
yd
2 il :
e Bl
e1 e2
I=F C,=m, NA—
. R
e =X C,=m, :
. : C.__- R C,.— -
&, =X, R, =1/B, |<A 1 1 2 L
L=1/k R, =1/B,
85
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Modelling of Mechanical Systems

Solution 15:

] € €,

I=F C,=m I\é{\/\, ¢
: 2

€ =X C2 =m,

o 'C) C..— R C,—— L
ez=X2 RlE]./Bl

L=1/k R, =1/B,

. B=6, E de, S : ”
'_1R22_R11 -G dt =0 —> F_Bz(xl_xz)_B1X1_m1X1:O

ez _el +C
Rz

dez+ jedt—Oﬂ B, (X, —%,)-m,%, —kx, =0
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Modelling of Mechanical Systems

Exercise: Obtain the governing dynamic equation of the following
system in which the bodies move on a frictionless surface. Also draw
the electrical analogy.

NMOUOVOMNAN AN
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Modelling of Electromechanical Systems
DC Motors: 1-Armature Control

Assume the armature voltage (v,) is the input to the system (DC
motor) and the angular position (&) of the rotor is the output of the
system. The aim is to obtain the transfer function

88
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Modelling of Electromechanical Systems
DC Motors: 1-Armature Control

The relation between the developed torque and the armature
current is ..
T =Kkl

Since the field current is constant in the armature control
technique, we have

T = ktia (1)
KVL in the armature loop:

va:Raia+La%+ea (2) A

v

a
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Modelling of Electromechanical Systems
DC Motors: 1-Armature Control

The relation between the back-emf (electromotive force) and the
angular position is o déo

dt
Since the field current is constant in the armature control
technique, we have

e, =kl @

e, =k (3
Newton’s 2" Law
Ra
T=16+B6 (4) B
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Modelling of Electromechanical Systems

DC Motors: 1-Armature Control
* Representing (1)-(4) and taking Laplace transform yields

T =ki, mmm)  T(s)=kI,(s) (1)

=R, +L, S e, == V,(5)=R,1(5)+Lsl,(5)+ Exf5) (2

e, = keé ‘ Ea(s): keS@(S) 3)
T=J6+B0 mmm) T(s)=Js?0(s)+ BsO(s) (4)
i + 5 2
Va <t> (i ) m )
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Modelling of Electromechanical Systems

DC Motors: 1-Armature Control
Representing (1)-(4) and taking Laplace transform yields

V,(s)= (R, +L,s)I,(s)+E,(s)

E.(s)=k,.sO(s) )

T(S):ktla(s) \

- V. (s)=(R, +L,s)I,(s)+k.sO(s)

- 1,(s)=+ (35" +Bs)e(s)

B
a <t> a € ] II:II )
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Modelling of Electromechanical Systems
DC Motors: 1-Armature Control

)N, (s)+k.sO(s) NE )=ki(Js +Bs)0(s)
X " 4
V,(s)=L(R, +L,s)(Js? +Bs)0O(s)+k,sO(s)

t

O(s) K,

Va(s) (R, +L,5)(Js?+Bs) +kk,s

V,(s)=(R, +L,s)l

@(S) Ki
Va(s) s[L,3s? +(R,J + L,B)s+ (R,B+kk, )]

=
=
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Modelling of Electromechanical Systems
DC Motors: 1-Armature Control
os) _ ki
Vals) s[L,3s?+ (R, +L,B)s+(R,B+kk,)]
* Since L, is normally small, the transfer function is simplified as
ofs) _ ki
= V,(5) s[R.Js+(R.B+kk)]

* |If the output is the angular velocity Q(s) = S@(S)

Q(s) _ k, Qs) _ k,
- V.(s) R,Js+(RB+kk,) - V.(s) 7.s+1
k R.J
Where k_= t and

= Tm =
" R.B+kk, R,B+kKk,
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Modelling of Electromechanical Systems
DC Motors: 2- Field Control

Assume the field voltage (V) is the input to the system (DC motor)
and the angular position (&) of the rotor is the output o the system.
The aim is to obtain the transfer function

=7
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Modelling of Electromechanical Systems
DC Motors: 2- Field Control

The relation between the developed torque and the field current
N T =Kiii,

Since the armature current is constant in the field control
technique, we have

T =k, (1)
KVL in the field loop:

Ri, +L, I 2 e
V. =R/ +L, — ,
f frf f dt ( ) <t>va
Newton’s 2" Law
T=J0+B6 (3)
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Modelling of Electromechanical Systems

DC Motors: 2- Field Control
* Representing (1)-(3) and taking Laplace transform yields

T =l mmm) T(s)=kl(s) (1)

V, =Rfif+Lf% m—) Vf(s):(Rf"'LfS)lf(s) (2)

T=J6+B0O mmm) T(s)=(Js?+Bs)O(s) (3)
T v ®(S) _ kt

? Vi(s) s(L,s+R,) (Js+B)
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Modelling of Electromechanical Systems

DC Motors: 2- Field Control
O(s) K,

V.6 S5 +R,) (35 B)

- If the output is angular velocity, we have  Q(s)=s0(s)
Q(S) K, Q(s) k_

= Vi(s) (LfS+Rf) (Js+B) — Vi (s) (TfS+1) (r s+1)

—— M K J
i, where k =—— , 7,=—
M. R B
Lf
Z' = —
and f Rf
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Nonlinear Systems

 Asystem is nonlinear if the principle of superposition does not
apply.

* Thus, for a nonlinear system the response to two inputs cannot be
calculated by treating one input at a time and adding the results.

 Some Examples of Nonlinear Systems:
* The output of a component may saturate for large input
signals.
 dampers used in physical systems may be linear for low-
velocity operations but may become nonlinear at high
velocities
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Linearization of Nonlinear Systems

If a system operates around an equilibrium point and if the
signals involved are small signals, then it is possible to
approximate the nonlinear system by a linear system.

Such a linear system is equivalent to the nonlinear system
considered within a limited operating range.

The linearization is based on the expansion of nonlinear function
into a Taylor series about the operating point and the retention of
only the linear term.

Because higher-order terms of the Taylor series expansion are
neglected, these neglected terms must be small enough.
Otherwise, the result will be inaccurate.
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Linearization of Nonlinear Systems

Consider a system whose input is X(t) and output is y(t). The
relationship between y(t) and x(t) is given by y = f (x)

If the normal operating condition corresponds to X., Y. then above
relation may be expanded into a Taylor series about this point as
follows:
df
_|__

dx|._

2
(x=x.) 1d°f

_ f =
y (Xe) T 2| dX2

(X=X, )+

X=X,

Neglecting the higher-order termsyield Y=Y, + K(X — xe)

_df
dx|,_,.

Finally assuming X =x—x, and Y =y—y, vyields Y=KX

where y, = f(x,) and K

101
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Linearization of Nonlinear Systems

X y
> y=f(x) >

X X Y y
»] Y=KX >
o
X = X=X dx X=X, Y =YY 102
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Linearization of Nonlinear Systems

Consider a system whose input is X,(t) and x,(t) and output is y(t).
The relationship between y(t) and the inputs is given by

y=f (Xl ) Xz)
Expanding Taylor series about equilibrium point X, X5. , Y
of of
y= f(xle’XZe)+ o (Xl_Xle)+ (Xz_xze)
axl X =Xy 6X2 X =Xy
| Xo=X2e X2 =X2e _
1 82 f 2 82 f 2
o 7 (Xl - Xle) + D (Xz o X2e)
2! (9X1 X, =Xqe 8X2 X, =Xqe
B Xo=Xoa X2=X2¢
o° f
+2 X, — Xgo KX, — X0 ) [+
2 2
T )
Xy =Xg¢ ] 103
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Linearization of Nonlinear Systems
Neglecting the higher-order terms yields

of
y= (X11X ) B Y= f(Xle’XZe)+ s (Xl X )"'87)( N (XZ_XZe)

0%,
Xy =Xpe Xy =Xpe

of

which can be written as Y=Yt Kl(xl - Xle)+ Kz(xz - X2e)

where Y, = f(X,, %, ) , K, _ M and K, _
X1=X1e 6)( X1=X1e

0%,
Xy =Xpe Xy =Xpe

Finally assuming X, =X, =X, X,=X,-X,, andY =y-y_ yields

e

Y =K, X, +K, X,
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Linearization of Nonlinear Systems
Linearization of the system Yy = f(xl,...xn) yields

(%0 = %)

X1 X1e

(%, — X )+ +ﬂ

):(1 =X1e aX

Xn=Xne X =Xne

of

— f e, -
» y (1e ne)+ 6X1

which can be writtenas Y = Y, + Ky (X =X, )+ + K (X, =X, )

Where ye = f( 1e’ ’Xne)' af

Xn=Xne

Finally assuming X, =X —X,, X =x —x_andY =y-y_ yields
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Linearization of Nonlinear Systems

Example 16: Linearize the following nonlinear algebraic equation
about X, =2 and X,, =1

y = 2X2X, +Sin(7 X, )+ /2%,

Y =K, X, +K, X,

/ \
Yﬁ/ X1:X1_X1e X2=X2—X2€

K, = 8f K, = 8f
aX x1 Xqe 8)( X1 X1

Xze X2e

Solution:

ye = f (Xle’ X2e)

106

2017 Shiraz University of Technology Dr. A. Rahideh



Linearization of Nonlinear Systems
Solution16: X, =2 X, =1 Y = 2X2X, +Sin(7 X, )+ /2%, X,

Y=K X, +K,X, mm) Y=(85+7)X,+9X,

Y, = T (X, Xy, ) = 2% 2% x1+in(277)+v/2x 2x1 =10

Y=y-y,=y-10 X =X =X =% —2 Xy =Xy =X =X, —1

e

of X 1
K, =— =| 4X, X, + 7w cos(z X, )+ —== =8+7+==(85+nx
1 @Xl 2::))((1: [ 1742 ( 1) /2x1x2])(1§ 2 ( )
of X
K,=— =| 2X7 + — =8+1=9
? 8X2 X, = X1 L ' 1/2X1X2 Jxlg

Xo=Xpe X, =1 107
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Linearization of Nonlinear State-Space P

Equations

Consider a system with p inputs,  outputs and n states representing
by the following nonlinear state-space equations

% =f(x(t),u(t))
y =g(x(t), u(t))

They can be written in the following form

R EANE)

X, fl(xl,.. X ul,...up)

X, fn(xl,...,xn,ul,...up)

Y1

Yq

g,(X,...

g,(x ...

X ul,...up)

EEATE)

The linearization of the system about its equilibrium X =X, and U=U,

is required.
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g \T/j%

Linearization of Nonlinear State-Space &

Equations

% | 0 XUyt )] N

X f(x XUy, up)_

The linearization of the nonlinear system about its equilibrium yields

Xl Ail Ain X Bll Blp U,

_Xn_ _Anl Ann__Xn_ Bn1 Bnp up

o of 1=12,...,n
=1 B, =—_ =
AJ an X=X X aUk X=X¢ J=L2,....n
L= e k=12,...,p 109
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g \T/j%

Linearization of Nonlinear State-Space

, T,
Equations
_yl‘ _gl(Xl,...,Xn,Ul,...Up)_ X:Xe
T | u=u,
Vol 94060 Xt uy)
The linearization of the nonlinear system about its equilibrium yields
yl Cll Cln | Xl | Dll Dl p ul
Ya | _qu an_ R _Dql Dy, s
. 5 ]=12,...,n
di g
C,=— D, =—- _
) aXJ X=X . auk X=Xg k 1’ 2’ " p
U=ue U=te I :1,2, ..,q 110
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