

Electric Machines II

Table of Contents

1. Single-Phase Transformers

2. Principle of Alternating Current (AC) Machines
3. Three-Phase Induction (Asynchronous) Machines

Chapter 1 Single-Phase Transformers

1.1. Introduction
1.2. Ideal Transformers
1.3. Non-ideal Transformers
1.4. Equivalent Circuits
1.5. Power Losses and Efficiency
1.6. Tests of Transformers

NOT INCLUDED
1.7. Parallel Connections of Transformers

NOT INCLUDED

1.8. Auto-transformers

Introduction

Transformers have the following characteristics

1. Transformers are electromagnetic energy conversion systems; as they receive electrical energy from the network; convert it to the magnetic energy; and then the magnetic energy is converted to the electrical energy with different voltage and current level.
2. A transformer has at least two windings: a primary and a secondary winding. Primary winding is the winding connected to the power source and the secondary winding is that connected to the load.
3. There is no electrical connection between the primary and secondary windings (except in auto-transformers); the connection is through a magnetic field.

Introduction

4. If the secondary voltage is lower than that of primary, the transformer is step-down; otherwise it is step-up.
5. Swapping the primary and secondary windings will change a step-down transformer to a step-up transformer and viceversa.
6. In a step-up transformer, the number of turns of the secondary winding is higher than that of the primary winding.
7. In a step-down transformer, the number of turns of the secondary winding is lower than that of the primary winding.
8. Since transformers have no mechanical part, their efficiency is normally very high.

Applications of Transformers

1. Electric Power Transmission Systems.
2. Impedance Matching (e.g. in speakers).
3. Blocking the dc component of an ac + dc signal or power.
4. Voltage and current measurement: Voltage or potential transformers (VT) or (PT); Current transformers (CT).

Structures of Transformers

1. Core Type

2. Shell Type

In both structures, to reduce the eddy current losses, the core is laminated

Structures of Transformers

1. Core Type

L layers

Odd layers

Even layers

Structures of Transformers

2. Shell Type

E \& I layers

Odd layers
Even layers

Some Points

- To reduce the eddy current losses, the core is laminated.
- Lamination material is silicon steel and the thickness of the laminations can be around 0.35 mm for 400 Hz .
- The laminated sheets are covered by epoxy to provide insulation between the layers.
- H.V. winding has higher number of turns but the thickness of the wire is lower compared to those of L.V. winding

Ideal Transformers

An ideal transformer has the following characteristics:

1. The ohmic losses due to the primary and secondary winding resistances are neglected.

$$
r_{1}=r_{2}=0
$$

2. The core losses are neglected.

$$
R_{c} \rightarrow \infty
$$

3. The magnetizing curve of the transformer core is assumed to be linear.
4. The leakage inductances of the windings are neglected. $x_{1}=x_{2}=0$
5. The core permeability goes to infinity. $\mu_{c} \rightarrow \infty \Rightarrow x_{\varphi} \rightarrow \infty$

Ideal Transformers

To make the analysis of ideal

 transformers more realistic, we assume that the permeability of the core is a finite value. So x_{φ} is a finite value.

Ideal Transformers

- Assume the magnetizing curve is linear.
- If current $i=I_{m} \sin \omega t$ flows in the windings, the flux in the core will be $\phi=\phi_{m} \sin \omega t$.
- The induced voltage in the primary and secondary windings will be

$$
\left.\begin{array}{l}
e_{1}=-N_{1} \frac{d \phi}{d t}=-N_{1} \omega \phi_{m} \cos \omega t \Rightarrow E_{m 1}=N_{1} \omega \phi_{m} \\
e_{2}=-N_{2} \frac{d \phi}{d t}=-N_{2} \omega \phi_{m} \cos \omega t \Rightarrow E_{m 2}=N_{2} \omega \phi_{m}
\end{array}\right\} \frac{E_{1}}{E_{2}}=\frac{N_{1}}{N_{2}}
$$

Phasor Diagram of Ideal Transformers No-load

- The objective is to draw the phasors of voltages and currents.
- Note that upper-case letters are used to indicate that the quantities are in phasor form.
- At no-load
$I_{1}=I_{\varphi}$
$I_{2}=0$

Ideal Transformers

- From the primary winding view

$$
\phi_{1}^{\prime}=-\phi_{2}
$$

- From the secondary winding view $\phi_{2}=\frac{N_{2} I_{2}}{\Re}$

$$
\phi_{1}^{\prime}=\frac{N_{1} I_{1}^{\prime}}{\Re}
$$

- Where \mathfrak{R} is the magnetic reluctance of the core.

$$
\Rightarrow \frac{I_{1}^{\prime}}{I_{2}}=-\frac{N_{2}}{N_{1}}
$$

Phasor Diagram of Ideal Transformers Under-load

- Assume the load is resistive-inductive.
- The objective is to draw the phasors of voltages and currents.

$$
\frac{I_{1}^{\prime}}{I_{2}}=-\frac{N_{2}}{N_{1}} \quad \frac{E_{1}}{E_{2}}=\frac{N_{1}}{N_{2}} \quad I_{1}=I_{1}^{\prime}+I_{\varphi}
$$

Non-Ideal Transformers

A non-ideal transformer has the following characteristics:

1. The ohmic losses are considered and modelled by the primary and secondary winding resistances. $\quad r_{1} \quad r_{2}$
2. The core losses are considered and modelled by a resistance. R_{c}
3. The magnetizing reactance is considered. x_{φ}
4. The flux leakage of the windings are considered and modelled by two leakage reactances. $\quad x_{1} \quad x_{2}$

Phasor Diagram of Non-Ideal Transformers

$$
\vec{I}_{e}=\vec{I}_{\varphi}+\vec{I}_{c}
$$

E_{1}

$$
\vec{V}_{1}=\vec{V}_{1}^{\prime}+r_{1} \vec{I}_{e}+j x_{1} \vec{I}_{e}
$$

Phasor Diagram of Non-Ideal Transformers

Under-load
Assume the load is resistive-inductive (RL).

$$
\vec{V}_{1}=\vec{V}_{1}^{\prime}+r_{1} \vec{I}_{1}+j x_{1} \vec{I}_{1} \quad \vec{I}_{e}=\vec{I}_{\varphi}+\vec{I}_{c}
$$

$$
\vec{V}_{2}=\vec{E}_{2}-r_{2} \vec{I}_{2}-j x_{2} \vec{I}_{2}
$$

$\cos \theta_{2}$ Load power factor
$\cos \theta_{1}$ Source power factor

Nominal Values of Transformers

- The nominal primary and secondary voltages, the nominal frequency and the nominal apparent power are mentioned on the name plate of transformers.
- The nominal primary and secondary currents can be found as
$I_{1}=\frac{S}{V_{1}} \quad I_{2}=\frac{S}{V_{2}}$
Name plate

$$
\begin{array}{ll}
V_{1} / V_{2} \\
f & (\mathrm{~Hz}) \\
S & (\mathrm{kVA})
\end{array}
$$

Equivalent Circuit of Transformers

$r_{1} \quad$ The primary winding resistance.
$r_{2} \quad$ The secondary winding resistance.
$R_{c} \quad$ The resistance equivalent to core losses.
$x_{\varphi} \quad$ The magnetizing reactance. $x_{\varphi}=L_{\varphi} \omega \quad L_{\varphi}=\frac{N_{1}^{2}}{\Re}$
$P_{c}=\frac{V_{1}^{\prime 2}}{R_{c}}$
$x_{1} \quad$ The reactance models the primary winding flux leakage.
$x_{2} \quad$ The reactance models the secondary winding flux leakage.

Equivalent Circuit Referred to Primary

$r_{2}^{\prime}=r_{2}\left(\frac{N_{1}}{N_{2}}\right)^{2}$

$$
x_{2}^{\prime}=x_{2}\left(\frac{N_{1}}{N_{2}}\right)^{2}
$$

$$
i_{1}^{\prime}=i_{2} \frac{N_{2}}{N_{1}}
$$

Equivalent Circuit Referred to Secondary

$$
\begin{array}{ll}
r_{1}^{\prime}=r_{1}\left(\frac{N_{2}}{N_{1}}\right)^{2} & x_{1}^{\prime}=x_{1}\left(\frac{N_{2}}{N_{1}}\right)^{2} \\
R_{c}^{\prime}=R_{c}\left(\frac{N_{2}}{N_{1}}\right)^{2}=i_{1} \frac{N_{1}}{N_{2}} \\
x_{\varphi}^{\prime}=x_{\varphi}\left(\frac{N_{2}}{N_{1}}\right)^{2} & i_{e}^{\prime}=i_{e} \frac{N_{1}}{N_{2}}
\end{array}
$$

Approximated Equivalent Circuit Referred to Primary

Approximated Equivalent Circuit Referred to Secondary
 -

ξ

$$
\begin{aligned}
& R_{e 2}=r_{1}^{\prime}+r_{2} \\
& X_{e 2}=x_{1}^{\prime}+x_{2}
\end{aligned}
$$

Approximated Equivalent Circuit

Neglecting the core losses and magnetizing reactance yields to the following approximated equivalent circuits

$$
R_{e 1}=r_{1}+r_{2}^{\prime}
$$

$$
R_{e 2}=r_{1}^{\prime}+r_{2}
$$

$$
X_{e 1}=x_{1}+x_{2}^{\prime}
$$

$$
X_{e 2}=x_{1}^{\prime}+x_{2}
$$

Approximated Equivalent Circuit

Neglecting the core losses, magnetizing reactance and the winding resistances yields to the following approximated equivalent circuits

$X_{e 1}=x_{1}+x_{2}^{\prime}$

$$
X_{e 2}=x_{1}^{\prime}+x_{2}
$$

Transformers

Example 1: Following is the equivalent circuit of a single phase transformer referred to primary with $250^{\mathrm{V}} / 2500^{\mathrm{V}}$. If a load with impedance of $380+\mathrm{j} 230$ ohms is connected to the secondary terminal
a) Calculate V_{2}
b) Calculate I_{1} and the source power factor and load power factor
c) Calculate the output power and the efficiency

Transformers

Solution 1: part a $\quad 250^{\mathrm{V}} / 2500^{\mathrm{V}}, Z_{L}=380+\mathrm{j} 230$ ohms $\quad V_{2}=$?
The load impedance referred to the primary is

$$
\begin{aligned}
& Z_{L}^{\prime}=(380+j 230)\left(\frac{250}{2500}\right)^{2}=3.8+j 2.3 \Omega \\
& I_{1}^{\prime}=\frac{250 \angle 0}{(0.2+3.8)+j(0.7+2.3)}=50 \angle-37^{\circ}=40-j 30 \mathrm{~A} \\
& V_{2} \frac{N_{1}}{N_{2}}=I_{1}^{\prime} Z_{L}^{\prime} \Rightarrow V_{2}=\frac{N_{2}}{N_{1}} I_{1}^{\prime} Z_{L}^{\prime} \Rightarrow V_{2}=\frac{2500}{250}(40-j 30)(3.8+j 2.3) \\
& V_{2}=2221 \angle-5.7^{\circ} \\
& v_{1}=250 \angle 0 \\
& -\overbrace{V_{1}}^{i_{1}}
\end{aligned}
$$

Transformers

Solution 1: part b $250^{\mathrm{V}} / 2500^{\mathrm{V}}, Z_{L}=380+\mathrm{j} 230$ ohms $I_{1}=$? $\cos \theta_{1}=$? $\cos \theta_{2}=?$

$$
\left.\begin{array}{l}
\vec{I}_{1}=\vec{I}_{1}^{\prime}+\vec{I}_{e} \\
\vec{I}_{e}=\vec{I}_{c}+\vec{I}_{\varphi}
\end{array}\right\} \quad \vec{I}_{1}=\vec{I}_{1}^{\prime}+\vec{I}_{c}+\vec{I}_{\varphi} \quad \downarrow \vec{I}_{1}=40-j 30+\frac{250}{500}+\frac{250}{j 250}
$$

Transformers

Solution 1: part c $250^{\mathrm{V}} / 2500^{\mathrm{V}}, Z_{L}=380+\mathrm{j} 230$ ohms $P_{\text {out }}=? \quad \eta=$?

$$
\begin{aligned}
& P_{\text {out }}=V_{2} I_{2} \cos \theta_{2} \\
& I_{2}=\frac{N_{1}}{N_{2}} I_{1}^{\prime} \\
& P_{\text {in }}=V_{1} I_{1} \cos \theta_{1} \\
& \eta=\frac{P_{\text {out }}}{P_{\text {in }}} \times 100 \\
& \eta=93.2 \%
\end{aligned} \quad P_{\text {out }}=2221 \times 50 \times \frac{250}{2500} \times 0.85=9439 \mathrm{~W}
$$

Losses and Efficiency

Losses

$$
P_{F e}=P_{h}+P_{e}
$$

Ohmic losses

$P_{c u}=r_{1} I_{1}^{2}+r_{2} I_{2}^{2}$

Eddy Current

$$
P_{e}=k_{e} f^{2} B_{m}^{2}
$$

$$
P_{h}=k_{h} f B_{m}^{n}
$$

Hysteresis Losses

Hysteresis losses are due to residual flux in the ferromagnetic core and defined as:

$$
P_{h}=k_{h} f B_{m}^{n} \quad 1.5 \leq n \leq 2.5
$$

where
$n \quad$ Steinmetz constant
f frequency

$B_{m} \quad$ maximum flux density
$k_{h} \quad$ constant depends of the type and volume of the core

Eddy Current Losses

Eddy current losses are due to current circulating in the ferromagnetic core and defined as:

$$
P_{e}=k_{e} f^{2} B_{m}^{2}
$$

where
f frequency
$B_{m} \quad$ maximum flux density

$k_{e} \quad$ constant depends of the type and thickness of the core

The total core (magnetic) losses are defined as

$$
P_{F e}=P_{c}=P_{h}+P_{e}
$$

Relation Between Core Losses and Input Voltage

$$
\begin{aligned}
& V_{1}=E_{1}=\frac{N_{1} \phi_{m} \omega}{\sqrt{2}}=\frac{N_{1} A B_{m} 2 \pi f}{\sqrt{2}}=\sqrt{2} \pi f N_{1} A B_{m} \quad \Longleftrightarrow B_{m}=\frac{V_{1}}{\sqrt{2} \pi f N_{1} A} \\
& P_{h}=k_{h} f B_{m}^{n}=k_{h} f\left(\frac{V_{1}}{\sqrt{2} \pi f N_{1} A}\right)^{n} \Rightarrow P_{h}=k_{1} \frac{V_{1}^{n}}{f^{n-1}} k_{1}=k_{h}\left(\frac{1}{\sqrt{2} \pi N_{1} A}\right)^{n} \\
& P_{e}=k_{e} f^{2} B_{m}^{2}=k_{e} f^{2}\left(\frac{V_{1}}{\sqrt{2} \pi f N_{1} A}\right)^{2} \Rightarrow P_{e}=k_{2} V_{1}^{2}
\end{aligned} k_{2}=k_{e}\left(\frac{1}{\sqrt{2} \pi N_{1} A}\right)^{2}-1 .
$$

Core Losses

Example 2: In a single phase transformer the core losses is 52 W at the frequency of 40 Hz ; the core losses increases to 90 W at the frequency of 60 Hz . Both cases are at the same maximum flux density. Calculate the eddy current and hysteresis losses at the frequency of 50 Hz .

$$
\begin{aligned}
& f_{1}=40 \mathrm{~Hz} \quad P_{c 1}=52 \mathrm{~W} \\
& f_{2}=60 \mathrm{~Hz} \quad \square \\
& P_{c 2}=90 \mathrm{~W} \\
& f_{3}=50 \mathrm{~Hz} \quad B_{m 1}=B_{n} \\
& P_{e 3}=?
\end{aligned}
$$

Core Losses

Solution 2: $f_{1}=40 \mathrm{~Hz} \quad P_{c 1}=52 \mathrm{~W}$

$$
B_{m 1}=B_{m 2}=B_{m}
$$

$$
f_{2}=60 \mathrm{~Hz} \quad P_{c 2}=90 \mathrm{~W}
$$

$$
f_{3}=50 \mathrm{~Hz}
$$

$$
P_{e 3}=?
$$

$$
P_{h 3}=?
$$

$$
P_{c}=P_{e}+P_{h}=k_{e} f^{2} B_{m}^{2}+k_{h} f B_{m}^{n}
$$

$$
\begin{aligned}
& P_{c 1}=k_{e} f_{1}^{2} B_{m 1}^{2}+k_{h} f_{1} B_{m 1}^{n} \\
& P_{c 2}=k_{e} f_{2}^{2} B_{m 2}^{2}+k_{h} f_{2} B_{m 2}^{n}
\end{aligned}
$$

$$
\rightharpoonup\left\{\begin{array}{l}
P_{c 1}=k_{1} f_{1}^{2}+k_{2} f_{1} \\
P_{c 2}=k_{1} f_{2}^{2}+k_{2} f_{2}
\end{array}\right.
$$

Core Losses

Solution 2: $f_{1}=40 \mathrm{~Hz} \quad P_{c 1}=52 \mathrm{~W}$

$$
\begin{array}{ll}
f_{2}=60 \mathrm{~Hz} \quad \square & P_{c 2}=90 \mathrm{~W}
\end{array} \begin{aligned}
& B_{m 1}=B_{m 2}=B_{m} \\
& f_{3}=50 \mathrm{~Hz} \quad \square \\
& P_{e 3}=?
\end{aligned} \quad P_{h 3}=?
$$

$\square\left\{\begin{array}{l}P_{c 1}=k_{1} f_{1}^{2}+k_{2} f_{1} \\ P_{c 2}=k_{1} f_{2}^{2}+k_{2} f_{2}\end{array}\right.$

Efficiency

$\eta=\frac{\text { Output power }}{\text { Input power }} \times 100=\frac{\text { Output power }}{\text { Output power }+ \text { Losses }} \times 100$

Auto-Transformers

- The voltage over one turn is $\frac{V_{1}}{N_{1}}$
- Therefore $V_{2}=N_{2} \frac{V_{1}}{N_{1}} \Rightarrow \frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}$
- Assuming an ideal auto-transformer

$$
\begin{aligned}
P_{1}=P_{2} & \longmapsto \\
& V_{1} I_{1} \cos \theta_{1}=V_{2} I_{2} \cos \theta_{2} \\
& \& \quad \cos \theta_{1} \approx \cos \theta_{2}
\end{aligned}
$$

$$
V_{1} I_{1}=V_{2} I_{2} \quad \square \quad \frac{V_{2}}{V_{1}}=\frac{I_{1}}{I_{2}}=\frac{N_{2}}{N_{1}}
$$

Step-Down Auto-Transformers意

$$
\begin{gathered}
M M F_{A B}=I_{1}\left(N_{1}-N_{2}\right)=I_{1} N_{1}-I_{1} N_{2} \\
=I_{2} N_{2}-I_{1} N_{2}=N_{2}\left(I_{2}-I_{1}\right)=M M F_{B C} \\
M M F_{A B}=M M F_{B C}
\end{gathered}
$$

$$
\begin{aligned}
& S_{A B}=I_{1}\left(V_{1}-V_{2}\right)=I_{1} V_{1}-I_{1} V_{2} \\
& =I_{2} V_{2}-I_{1} V_{2}=V_{2}\left(I_{2}-I_{1}\right)=S_{B C}
\end{aligned}
$$

$$
S_{A B}=S_{B C}
$$

$$
\frac{V_{2}}{V_{1}}=\frac{I_{1}}{I_{2}}=\frac{N_{2}}{N_{1}}
$$

Step-Down Auto-Transformers䔝

$\frac{\text { Inductive power }}{\text { Total input power }}=\frac{I_{1}\left(V_{1}-V_{2}\right)}{I_{1} V_{1}}=1-\frac{V_{2}}{V_{1}}$
$\frac{\text { Inductive power }}{\text { Total input power }}=1-\frac{N_{2}}{N_{1}}=1-k$
$k=\frac{N_{2}}{N_{1}}<1$

Conductive power $=$ Total input power - Inductive power
Conductive power $=V_{1} I_{1}-I_{1}\left(V_{1}-V_{2}\right)=V_{2} I_{1}$
$\frac{\text { Conductive power }}{\text { Total input power }}=\frac{V_{2} I_{1}}{V_{1} I_{1}}=\frac{N_{2}}{N_{1}}=k$

Step-Up Auto-Transformers

$\frac{\text { Inductive power }}{\text { Total input power }}=\frac{V_{1}\left(I_{1}-I_{2}\right)}{I_{1} V_{1}}=1-\frac{I_{2}}{I_{1}}$
$\frac{\text { Inductive power }}{\text { Total input power }}=1-\frac{N_{1}}{N_{2}}=1-k$
$k=\frac{N_{1}}{N_{2}}<1$

Conductive power $=$ Total input power - Inductive power
Conductive power $=V_{1} I_{1}-V_{1}\left(I_{1}-I_{2}\right)=V_{1} I_{2}$
$\frac{\text { Conductive power }}{\text { Total input power }}=\frac{V_{1} I_{2}}{V_{1} I_{1}}=\frac{N_{1}}{N_{2}}=k$

Auto-Transformers From TwoWinging Transformers Step-Down

Auto-Transformers From TwoWinging Transformers Step-Up

Auto-Transformers

Example 3: A two winding transformer with $2300 / 230$ and $S=20 \mathrm{kVA}$ is used as an auto-transformer. The voltage source of the autotransformer is 2300 V .
a) If the load power factor is unity, calculate the output power, inductive and conductive power.
b) If the efficiency of the two-winding transformer at nominal load and power factor of 0.6 is 96%, calculate the efficiency of the auto-transformer at the same power factor.

Auto-Transformers

Solution 3: A two winding transformer with $2300 / 230$ and $S=20 \mathrm{kVA}$ is used as an auto-transformer. The voltage source of the autotransformer is 2300 V .
a) $\quad P F=1$
$P_{\text {out }}=$?
$P_{\text {ind }}=$?
$P_{\text {con }}=$?

Auto-Transformers

Solution 3: A two winding transformer with $2300 / 230$ and $S=20 \mathrm{kVA}$ is used as an auto-transformer. The voltage source of the autotransformer is 2300 V .
a) $\quad P F=1 \quad P_{\text {out }}=$? $\quad P_{\text {ind }}=$? $\quad P_{\text {con }}=$?

$$
\begin{array}{ll}
I_{2}=\frac{20000}{230}=86.9 \mathrm{~A} & I_{1}=\frac{20000}{2300}=8.69 \mathrm{~A} \\
I_{2}^{a}=I_{2}=86.9 \mathrm{~A} & I_{1}^{a}=I_{1}+I_{2}=95.59 \mathrm{~A}
\end{array}
$$

$$
P_{\text {out }}=V_{2}^{a} I_{2}^{a}=2530 \times 86.9=220 \mathrm{kVA}
$$

$$
P_{\text {ind }}=I_{2}^{a}\left(V_{2}^{a}-V_{1}^{a}\right)=86.9 \times 230=20 \mathrm{kVA}
$$

$$
P_{\text {con }}=P_{\text {out }}-P_{\text {ind }}=200 \mathrm{kVA}
$$

Auto-Transformers

Solution 3: A two winding transformer with $2300 / 230$ and $S=20 \mathrm{kVA}$ is used as an auto-transformer. The voltage source of the autotransformer is 2300 V .
b) $\quad P F=0.6$ at nominal load $\eta=96 \%$

$$
\eta_{a}=?
$$

$$
\begin{array}{ll}
\eta=\frac{P_{\text {out }}}{P_{\text {out }}+P_{\text {losses }}} & 0.96=\frac{20000 \times 0.6}{20000 \times 0.6+P_{\text {losses }}} \\
P_{\text {losses }}=500 \mathrm{~W} & \\
\eta_{a}=\frac{P_{\text {out }}}{P_{\text {out }}+P_{\text {losses }}} & \eta_{a}=\frac{220000 \times 0.6}{220000 \times 0.6+500} \\
\eta_{a}=0.9962 &
\end{array}
$$

Maximum Efficiency of Transformers

$$
\eta=\frac{P_{\text {out }}}{P_{\text {out }}+P_{c u}+P_{F e}}
$$

At a constant voltage $P_{\text {out }} \propto I$

$$
\begin{aligned}
& P_{c u} \propto I^{2} \\
& P_{F e}=c t e
\end{aligned}
$$

$$
\begin{aligned}
& \eta=\frac{k_{1} I}{k_{1} I+k_{2} I^{2}+k_{3}} \\
& \frac{d \eta}{d I}=0 \Rightarrow k_{3}=k_{2} I^{2}
\end{aligned}
$$

For maximum efficiency the core losses should be the same as ohmic losses.

